TU Darmstadt / ULB / TUbiblio

Evolving morphotropic phase boundary in lead-free (Bi[sub 1/2]Na[sub 1/2])TiO[sub 3]–BaTiO[sub 3] piezoceramics

Jo, Wook ; Daniels, John E. ; Jones, Jacob L. ; Tan, Xiaoli ; Thomas, Pamela A. ; Damjanovic, Dragan ; Rödel, Jürgen (2011)
Evolving morphotropic phase boundary in lead-free (Bi[sub 1/2]Na[sub 1/2])TiO[sub 3]–BaTiO[sub 3] piezoceramics.
In: Journal of Applied Physics, 109 (1)
doi: 10.1063/1.3530737
Article, Bibliographie

This is the latest version of this item.

Abstract

The correlation between structure and electrical properties of lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

Item Type: Article
Erschienen: 2011
Creators: Jo, Wook ; Daniels, John E. ; Jones, Jacob L. ; Tan, Xiaoli ; Thomas, Pamela A. ; Damjanovic, Dragan ; Rödel, Jürgen
Type of entry: Bibliographie
Title: Evolving morphotropic phase boundary in lead-free (Bi[sub 1/2]Na[sub 1/2])TiO[sub 3]–BaTiO[sub 3] piezoceramics
Language: English
Date: January 2011
Journal or Publication Title: Journal of Applied Physics
Volume of the journal: 109
Issue Number: 1
DOI: 10.1063/1.3530737
Abstract:

The correlation between structure and electrical properties of lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

Uncontrolled Keywords: barium compounds, ferroelectric ceramics, ferroelectric transitions, mixtures, permittivity, piezoceramics, sodium compounds, space groups, texture
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences
Date Deposited: 15 Jun 2011 08:14
Last Modified: 05 Mar 2013 09:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details