Münch, Holger (2010)
Kohärente Frequenzkonversion ultra-kurzer Laserpulse in den vakuum-ultravioletten Spektralbereich.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication
Abstract
Das Ziel dieser Arbeit bestand in der kontrollierten und effizienten Erzeugung von Strahlung im tiefen vakuum-ultravioletten (VUV) Spektralbereich mit Wellenlängen im Bereich von 100 nm. Dabei wurden ultra-kurze (ps) Laserpulse eingesetzt werden, um so auch ultra-kurze Pulsdauern der frequenzkonvertierten Strahlung zu erzielen. Im ersten Teil dieser Arbeit wurde ein Lasersystem aufgebaut, welches die Erzeugung, Verstärkung und Charakterisierung von ultra-kurzen (ps) Laserpulsen im sichtbaren Spektralbereich ermöglicht. Die Schwierigkeit bestand dabei in der Anforderung, Laserpulse zu generieren, die sich durch eine Stabilität von Pulsdauer und Pulsenergie sowie einem langzeitstabilen Verhalten des gesamten Lasersystems auszeichnet. Dazu wurden unterschiedlichste Lasersysteme unter Verwendung von schneller und stabiler Elektronik miteinander synchronisiert. Mittels kommerzieller Lasersysteme, eines synchron-gepumpten optisch parametrischen Oszillator sowie eines gepulsten Farbstoffverstärkers samt Hochleistungspumplaser können (ps) Laserpulse im Wellenlängenbereich von 527 nm bis 550 nm mit Pulsenergien von bis zu 150 Mikrojoule bei einer Pulsdauer von ca. 1.1 ps erzeugt werden. Zur zeitlichen und spektralen Charakterisierung der nachverstärkten ultra-kurzen Laserpulse wurde außerdem ein Gerät entwickelt, welches auf dem Prinzip des frequency-resolved optical gating basiert. Durch die Kombination eines Autokorrelators mit einem Spektrometer ist es möglich neben der Pulsdauer sowie der spektralen Intensitätsverteilung auch die zeitliche Variation der Laserfrequenz während des Laserpulses zu vermessen. In einem weiteren Schritt wurde zusätzlich zum (ps) Lasersystem ein spektral durchstimmbares (ns) Lasersystem auf Basis eines (ns)-optisch parametrischen Oszillators wieder aufgebaut. Durch den Austausch des vorherigen Pumplasers gegen einen neuen, speziell angepassten Pumplaser, konnte die Pulsenergie der erzeugten bandbreiten-begrenzten (ns)-Laserpulse im sichtbaren Spektralbereich deutlich erhöht werden. Allerdings hat sich auf Grund der veränderten Pumplaserspezifikationen die räumliche Intensitätsverteilung deutlich verschlechtert. Durch eine geeignete Synchronisation des (ns) Lasersystems auf das (ps)-Lasersystem besteht jetzt die Möglichkeit Experimente bei simultanem Einsatz von (ns)- und (ps)-Laserpulsen zu realisieren. Zeitgleich wurde ein neuer Farbstoffverstärker entwickelt, der durch ein modernisiertes Design der einzelnen Verstärkerstufen zu einer deutlichen Verbesserung des räumlichen Strahlprofils der verstärkten (ps) Laserpulse führt. Ebenso konnte die maximale Pulsenergie erhöht werden. Allerdings bestehen zurzeit noch Probleme mit verstärkter Spontanemission. Der zweite Teil dieser Arbeit beschäftigte sich mit der kohärenten Kontrolle von Frequenzkonversionsprozessen zur Erzeugung von VUV-Strahlung. Erstmals wurden dabei (ps)-Laserpulse bei der experimentellen Umsetzung verwendet. Mittels Frequenzverfünffachung und Vierwellenmischung wird simultan VUV-Strahlung mit einer Wellenlänge von 106 nm auf zwei Konversionspfaden generiert. Die beiden Konversionspfade unterschieden sich dabei lediglich in der Anzahl der pro VUV-Photon konvertierten Photonen. Im ersten Fall werden fünf Photonen mit der fundamentalen Wellenlänge λ_1 = 530 nm in ein VUV-Photon konvertiert. Im zweiten Fall werden ein Photon mit der fundamentalen Wellenlänge und zwei Photonen mit der frequenzverdoppelten Wellenlänge λ_2 = 265 nm in ein VUV-Photon konvertiert. Als nichtlineares Medium dient dabei ein dichter Strahl aus Xenon-Atomen. Die beiden Konversionsprozesse werden resonant überhöht, indem die fundamentale Laserstrahlung Fünf-Photonen-resonant zum atomaren Übergang vom Grundzustand 5p6 1S0 in den angeregten Zustand 8d 2[1/2]1 der Xenon-Atome abgestimmt wird. Durch die Variation der relativen Phase zwischen den beiden Konversionsprozessen, d.h. zwischen fundamentalem und frequenzverdoppeltem Laserfeld, konnte eine deutliche Modulation der Intensität der erzeugten VUV-Strahlung auf Grund von Quanteninterferenzeffekten beobachtet werden. Der erzielte Kontrast von 20% ist deutlich geringer als der maximal mögliche Kontrast von 100%. Die Ursache dafür ist im Wesentlichen der Effekt der räumlichen Phasenanpassung auf den einzelnen Konversionspfaden, der dazu führt, dass die Interferenz der beiden Konversionspfade unvollständig ausfällt. Dennoch konnte eindeutig nachgewiesen werden, dass sich kohärente Kontrolltechniken auch auf Frequenzkonversionsprozesse hoher Ordnung bei der Verwendung von ultra-kurzen (ps) Laserpulsen zur Erzeugung von VUV-Strahlung anwenden lassen. Im dritten Teil dieser Arbeit wurde die Anwendbarkeit von adiabatisch getriebener Summenfrequenzmischung zur Erzeugung von ultra-kurzen Laserpulsen im VUV-Spektralbereich untersucht. Dazu wurde das nichtlineare Medium, das wieder aus einem dichten Strahl aus Xenon-Atomen besteht, mittels eines Zwei-Photonen-Prozesses zunächst nah-resonant angeregt. Bei leichten Verstimmungen der Frequenz der Pump-Laserstrahlung von der exakten Zwei-Photonen-Resonanz des Übergangs vom 5p6 1S0 Grundzustand in den angeregten 7p 2[1/2]0 Zustand tritt der Effekt des coherent population return (CPR) auf. Dabei wird das atomare System während der Wechselwirkung mit dem Pump-Laserpuls in einen kohärenten Überlagerungszustand aus Grund- und angeregtem Zustand überführt. Bei hinreichend hoher Intensität der Pump-Laserstrahlung, sind die Wahrscheinlichkeitsamplituden der beiden Zustände in der kohärenten Überlagerung identisch und das System wird in einem Zustand maximaler atomarer Kohärenz |ρ_12 |=|c_1^* c_2 |=0.5 präpariert. Auf Grund dieser Kohärenz erfolgt eine Überhöhung der induzierten nichtlinearen Polarisation des Mediums, welche bei Wechselwirkung des Systems mit einem weiteren, ultra-kurzen (ps) Probe-Laserpuls in einer Überhöhung der Effizienz der auftretenden Summenfrequenzmischung resultiert. Es wurde demonstriert, dass die Kombination aus kohärenter Präparation mittels eines (ns) Pump-Laserpulses und Frequenzkonversion eines (ps) Probe-Laserpulses die effiziente Erzeugung von ultra-kurzen Laserpulsen im VUV-Spektralbereich ermöglicht. In einem weiteren Schritt wurde gezeigt, dass sich das umgesetzt Mischschema auch zur Konversion von spektral verbreiterten Probe-Laserpulsen anwenden lässt. Dies ermöglicht die Erzeugung großer spektraler Bandbreiten im VUV-Spektralbereich und als Fernziel die effiziente Erzeugung von Laserpulsen mit sehr kurzen Wellenlängen und Pulsdauern von weniger als einer Femtosekunde.
Item Type: | Ph.D. Thesis | ||||
---|---|---|---|---|---|
Erschienen: | 2010 | ||||
Creators: | Münch, Holger | ||||
Type of entry: | Primary publication | ||||
Title: | Kohärente Frequenzkonversion ultra-kurzer Laserpulse in den vakuum-ultravioletten Spektralbereich | ||||
Language: | German | ||||
Referees: | Halfmann, Prof. Dr. Thomas ; Birkl, Prof. Dr. Gerhard | ||||
Date: | 17 November 2010 | ||||
Refereed: | 15 November 2010 | ||||
URL / URN: | urn:nbn:de:tuda-tuprints-23290 | ||||
Abstract: | Das Ziel dieser Arbeit bestand in der kontrollierten und effizienten Erzeugung von Strahlung im tiefen vakuum-ultravioletten (VUV) Spektralbereich mit Wellenlängen im Bereich von 100 nm. Dabei wurden ultra-kurze (ps) Laserpulse eingesetzt werden, um so auch ultra-kurze Pulsdauern der frequenzkonvertierten Strahlung zu erzielen. Im ersten Teil dieser Arbeit wurde ein Lasersystem aufgebaut, welches die Erzeugung, Verstärkung und Charakterisierung von ultra-kurzen (ps) Laserpulsen im sichtbaren Spektralbereich ermöglicht. Die Schwierigkeit bestand dabei in der Anforderung, Laserpulse zu generieren, die sich durch eine Stabilität von Pulsdauer und Pulsenergie sowie einem langzeitstabilen Verhalten des gesamten Lasersystems auszeichnet. Dazu wurden unterschiedlichste Lasersysteme unter Verwendung von schneller und stabiler Elektronik miteinander synchronisiert. Mittels kommerzieller Lasersysteme, eines synchron-gepumpten optisch parametrischen Oszillator sowie eines gepulsten Farbstoffverstärkers samt Hochleistungspumplaser können (ps) Laserpulse im Wellenlängenbereich von 527 nm bis 550 nm mit Pulsenergien von bis zu 150 Mikrojoule bei einer Pulsdauer von ca. 1.1 ps erzeugt werden. Zur zeitlichen und spektralen Charakterisierung der nachverstärkten ultra-kurzen Laserpulse wurde außerdem ein Gerät entwickelt, welches auf dem Prinzip des frequency-resolved optical gating basiert. Durch die Kombination eines Autokorrelators mit einem Spektrometer ist es möglich neben der Pulsdauer sowie der spektralen Intensitätsverteilung auch die zeitliche Variation der Laserfrequenz während des Laserpulses zu vermessen. In einem weiteren Schritt wurde zusätzlich zum (ps) Lasersystem ein spektral durchstimmbares (ns) Lasersystem auf Basis eines (ns)-optisch parametrischen Oszillators wieder aufgebaut. Durch den Austausch des vorherigen Pumplasers gegen einen neuen, speziell angepassten Pumplaser, konnte die Pulsenergie der erzeugten bandbreiten-begrenzten (ns)-Laserpulse im sichtbaren Spektralbereich deutlich erhöht werden. Allerdings hat sich auf Grund der veränderten Pumplaserspezifikationen die räumliche Intensitätsverteilung deutlich verschlechtert. Durch eine geeignete Synchronisation des (ns) Lasersystems auf das (ps)-Lasersystem besteht jetzt die Möglichkeit Experimente bei simultanem Einsatz von (ns)- und (ps)-Laserpulsen zu realisieren. Zeitgleich wurde ein neuer Farbstoffverstärker entwickelt, der durch ein modernisiertes Design der einzelnen Verstärkerstufen zu einer deutlichen Verbesserung des räumlichen Strahlprofils der verstärkten (ps) Laserpulse führt. Ebenso konnte die maximale Pulsenergie erhöht werden. Allerdings bestehen zurzeit noch Probleme mit verstärkter Spontanemission. Der zweite Teil dieser Arbeit beschäftigte sich mit der kohärenten Kontrolle von Frequenzkonversionsprozessen zur Erzeugung von VUV-Strahlung. Erstmals wurden dabei (ps)-Laserpulse bei der experimentellen Umsetzung verwendet. Mittels Frequenzverfünffachung und Vierwellenmischung wird simultan VUV-Strahlung mit einer Wellenlänge von 106 nm auf zwei Konversionspfaden generiert. Die beiden Konversionspfade unterschieden sich dabei lediglich in der Anzahl der pro VUV-Photon konvertierten Photonen. Im ersten Fall werden fünf Photonen mit der fundamentalen Wellenlänge λ_1 = 530 nm in ein VUV-Photon konvertiert. Im zweiten Fall werden ein Photon mit der fundamentalen Wellenlänge und zwei Photonen mit der frequenzverdoppelten Wellenlänge λ_2 = 265 nm in ein VUV-Photon konvertiert. Als nichtlineares Medium dient dabei ein dichter Strahl aus Xenon-Atomen. Die beiden Konversionsprozesse werden resonant überhöht, indem die fundamentale Laserstrahlung Fünf-Photonen-resonant zum atomaren Übergang vom Grundzustand 5p6 1S0 in den angeregten Zustand 8d 2[1/2]1 der Xenon-Atome abgestimmt wird. Durch die Variation der relativen Phase zwischen den beiden Konversionsprozessen, d.h. zwischen fundamentalem und frequenzverdoppeltem Laserfeld, konnte eine deutliche Modulation der Intensität der erzeugten VUV-Strahlung auf Grund von Quanteninterferenzeffekten beobachtet werden. Der erzielte Kontrast von 20% ist deutlich geringer als der maximal mögliche Kontrast von 100%. Die Ursache dafür ist im Wesentlichen der Effekt der räumlichen Phasenanpassung auf den einzelnen Konversionspfaden, der dazu führt, dass die Interferenz der beiden Konversionspfade unvollständig ausfällt. Dennoch konnte eindeutig nachgewiesen werden, dass sich kohärente Kontrolltechniken auch auf Frequenzkonversionsprozesse hoher Ordnung bei der Verwendung von ultra-kurzen (ps) Laserpulsen zur Erzeugung von VUV-Strahlung anwenden lassen. Im dritten Teil dieser Arbeit wurde die Anwendbarkeit von adiabatisch getriebener Summenfrequenzmischung zur Erzeugung von ultra-kurzen Laserpulsen im VUV-Spektralbereich untersucht. Dazu wurde das nichtlineare Medium, das wieder aus einem dichten Strahl aus Xenon-Atomen besteht, mittels eines Zwei-Photonen-Prozesses zunächst nah-resonant angeregt. Bei leichten Verstimmungen der Frequenz der Pump-Laserstrahlung von der exakten Zwei-Photonen-Resonanz des Übergangs vom 5p6 1S0 Grundzustand in den angeregten 7p 2[1/2]0 Zustand tritt der Effekt des coherent population return (CPR) auf. Dabei wird das atomare System während der Wechselwirkung mit dem Pump-Laserpuls in einen kohärenten Überlagerungszustand aus Grund- und angeregtem Zustand überführt. Bei hinreichend hoher Intensität der Pump-Laserstrahlung, sind die Wahrscheinlichkeitsamplituden der beiden Zustände in der kohärenten Überlagerung identisch und das System wird in einem Zustand maximaler atomarer Kohärenz |ρ_12 |=|c_1^* c_2 |=0.5 präpariert. Auf Grund dieser Kohärenz erfolgt eine Überhöhung der induzierten nichtlinearen Polarisation des Mediums, welche bei Wechselwirkung des Systems mit einem weiteren, ultra-kurzen (ps) Probe-Laserpuls in einer Überhöhung der Effizienz der auftretenden Summenfrequenzmischung resultiert. Es wurde demonstriert, dass die Kombination aus kohärenter Präparation mittels eines (ns) Pump-Laserpulses und Frequenzkonversion eines (ps) Probe-Laserpulses die effiziente Erzeugung von ultra-kurzen Laserpulsen im VUV-Spektralbereich ermöglicht. In einem weiteren Schritt wurde gezeigt, dass sich das umgesetzt Mischschema auch zur Konversion von spektral verbreiterten Probe-Laserpulsen anwenden lässt. Dies ermöglicht die Erzeugung großer spektraler Bandbreiten im VUV-Spektralbereich und als Fernziel die effiziente Erzeugung von Laserpulsen mit sehr kurzen Wellenlängen und Pulsdauern von weniger als einer Femtosekunde. |
||||
Alternative Abstract: |
|
||||
Classification DDC: | 500 Science and mathematics > 530 Physics | ||||
Divisions: | 05 Department of Physics > Institute of Applied Physics 05 Department of Physics |
||||
Date Deposited: | 25 Nov 2010 11:32 | ||||
Last Modified: | 05 Mar 2013 09:42 | ||||
PPN: | |||||
Referees: | Halfmann, Prof. Dr. Thomas ; Birkl, Prof. Dr. Gerhard | ||||
Refereed / Verteidigung / mdl. Prüfung: | 15 November 2010 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |