TU Darmstadt / ULB / TUbiblio

Gravity effect on liquid film hydrodynamics and spray cooling

Kyriopoulos, Olympia Natalia (2010)
Gravity effect on liquid film hydrodynamics and spray cooling.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

Spray-wall interaction is a key element in a multitude of technologies. It occurs in numerous industrial applications such as in internal combustion engines, gas turbines, spray drying, spray coating and cooling. A large diversity of phenomena is associated with the flow in the liquid layer initiated by single drop impacts onto a wall and their interactions. Due to the complexity of the problem, the hydrodynamics of liquid films created by sprays and the associated heat transfer are not entirely understood. Current approaches, usually presented in the form of empirical correlations or developed as a simple superposition of single drop impacts, disregard completely the physics of spray wall interaction. No reliable model describing reliably the behavior of the liquid film or predicting the effectiveness of spray cooling has been developed to date. The main difficulty in spray research is the fact that most sprays are usually polydisperse. Their behavior is governed by a large number of parameters which cannot be varied and controlled independently. Thus, it is not easy to identify the main influencing parameters or their combinations which define the problem. This thesis is devoted to the dynamics of a liquid film produced by normal spray impact onto a heated target. It is aimed at a better understanding the hydrodynamics and heat transfer associated with spray impact onto a heated target and at providing a basis for the modeling of spray cooling. Further progress in this field of research is achieved by performing experiments for diverse spray parameters and under various gravity conditions. The experiments under microgravity conditions are performed during parabolic flights and on board a ballistic rocket. Additionally, experiments have been performed with varied gravity levels, between -20g to +20g, in a centrifuge. Spray propagation and spray-wall interaction are observed using high-speed visualization under various gravity levels and various volumetric rates. The characteristic spray parameters are then determined with the help of image processing. Complementary to this, the spray is characterized using the phase Doppler instrument in the laboratory. To study the liquid film hydrodynamics, a robust method is developed to determine a typical film thickness created by spray impact. In addition, the heat transfer mechanisms involved in the spray-wall interaction are outlined. Heat fluxes are measured for various spray impact parameters and target temperatures. The influence of gravity, film thickness and other parameters on spray-wall interaction and spray cooling are discussed. Based on the collected data, a sound basis for reliable modeling of spray cooling is provided and validated by comparison with other experimental data from the literature. Semi-empirical models are proposed for the secondary spray as well as for the characteristic film thickness. The values of the typical film thickness are then used for description of the spray cooling efficiency.

Item Type: Ph.D. Thesis
Erschienen: 2010
Creators: Kyriopoulos, Olympia Natalia
Type of entry: Primary publication
Title: Gravity effect on liquid film hydrodynamics and spray cooling
Language: English
Referees: Roisman, Priv.-Doz. I. V. ; Tropea, Prof. Dr.- C. ; Moreira, Prof. Dr.- A.
Date: 21 July 2010
Refereed: 21 June 2010
URL / URN: urn:nbn:de:tuda-tuprints-22434
Abstract:

Spray-wall interaction is a key element in a multitude of technologies. It occurs in numerous industrial applications such as in internal combustion engines, gas turbines, spray drying, spray coating and cooling. A large diversity of phenomena is associated with the flow in the liquid layer initiated by single drop impacts onto a wall and their interactions. Due to the complexity of the problem, the hydrodynamics of liquid films created by sprays and the associated heat transfer are not entirely understood. Current approaches, usually presented in the form of empirical correlations or developed as a simple superposition of single drop impacts, disregard completely the physics of spray wall interaction. No reliable model describing reliably the behavior of the liquid film or predicting the effectiveness of spray cooling has been developed to date. The main difficulty in spray research is the fact that most sprays are usually polydisperse. Their behavior is governed by a large number of parameters which cannot be varied and controlled independently. Thus, it is not easy to identify the main influencing parameters or their combinations which define the problem. This thesis is devoted to the dynamics of a liquid film produced by normal spray impact onto a heated target. It is aimed at a better understanding the hydrodynamics and heat transfer associated with spray impact onto a heated target and at providing a basis for the modeling of spray cooling. Further progress in this field of research is achieved by performing experiments for diverse spray parameters and under various gravity conditions. The experiments under microgravity conditions are performed during parabolic flights and on board a ballistic rocket. Additionally, experiments have been performed with varied gravity levels, between -20g to +20g, in a centrifuge. Spray propagation and spray-wall interaction are observed using high-speed visualization under various gravity levels and various volumetric rates. The characteristic spray parameters are then determined with the help of image processing. Complementary to this, the spray is characterized using the phase Doppler instrument in the laboratory. To study the liquid film hydrodynamics, a robust method is developed to determine a typical film thickness created by spray impact. In addition, the heat transfer mechanisms involved in the spray-wall interaction are outlined. Heat fluxes are measured for various spray impact parameters and target temperatures. The influence of gravity, film thickness and other parameters on spray-wall interaction and spray cooling are discussed. Based on the collected data, a sound basis for reliable modeling of spray cooling is provided and validated by comparison with other experimental data from the literature. Semi-empirical models are proposed for the secondary spray as well as for the characteristic film thickness. The values of the typical film thickness are then used for description of the spray cooling efficiency.

Alternative Abstract:
Alternative abstract Language

Spray-Wand-Wechselwirkung ist ein Schlüsselelement in einer Vielzahl von Technologien. Sie tritt in zahlreichen Industrieanwendungen auf, wie beispielsweise in Verbrennungsmotoren, Gasturbinen, Sprühtrocknung, -beschichtung und -kühlung. Eine große Vielfalt von Phänomenen ist mit der Filmströmung verbunden, initiiert durch den Aufprall einzelner Tropfen auf eine beheizte Wand und deren Interaktionen. Aufgrund der Komplexität des Problems ist die Hydrodynamik der Flüssigkeitsfilme erzeugt durch Sprays nicht vollständig nachvollzogen. Derzeitige Ansätze, in der Regel dargelegt in Form von empirischen Korrelationen oder entwickelt als Superposition einzelner Tropfenaufpralle, missachten die Physik der Spray-Wand-Wechselwirkung. Bislang wurde kein Modell entwickelt, das zuverlässig das Verhalten des Flüssigkeitsfilms beschreibt oder die Effektivität von Sprühkühlung voraussagt. Diese sind bestimmt durch eine Vielzahl von Parametern, die nicht voneinander unabhängig variiert und geregelt werden können. Folglich ist es nicht einfach, die hauptsächlichen Einflussfaktoren oder deren Kombinationen zu identifizieren, die dieses Problem definieren. Die vorliegende Dissertation widmet sich der Dynamik des Flüssigkeitsfilms erzeugt durch Sprayaufprall auf eine beheizte Oberfläche. Das allgemeine Ziel der Untersuchungen liegt darin, die Hydrodynamik und die Wärmeübertragung beim Sprayaufprall auf einer beheizten Oberfläche besser zu verstehen und eine Grundlage für eine Modellierung von Spraykühlung zu schaffen. Weiterer Fortschritt auf diesem Gebiet wurde durch das Durchführen von Experimenten unter diversen Sprayparametern und unter verschiedenen Gravitationsbedingungen erreicht. Versuche unter Mikrogravitation wurden während Parabelflügen und an Bord einer Forschungsrakete realisiert. Zudem wurden Experimente im Bereich von -20g bis +20g in einer Zentrifuge durchgeführt. Sprayausbreitung und Spray-Wand-Wechselwirkung werden mit Hilfe von Hochgeschwindigkeitsaufnahmen unter verschiedenen Gravitationsbedingungen sowie unterschiedlichen Durchflüssen beobachtet. Charakteristische Sprayparameter werden mit Hilfe von Bildbearbeitung bestimmt. Ergänzend wird das Spray mittels der Phasen Doppler Technik charakterisiert. Zur Untersuchung der Flüssigkeitsfilmhydrodynamik wird eine robuste Methode entwickelt, die eine typische Filmdicke, erzeugt durch Sprayaufprall, bestimmt. Zudem werden Wärmeübertragungsmechanismen umrissen, die an der Spray-Wand-Wechselwirkung beteiligt sind. Wärmestromdichten werden für unterschiedliche Sprayparameter und Wandtemperaturen gemessen. Der Einfluss von Gravitation, Filmdicke und weiterer Parameter auf die Spray-Wand-Wechselwirkung sowie auf Sprühkühlung werden diskutiert. Basierend auf die gewonnenen Daten, wird eine solide Grundlage für eine zuverlässige Modellierung von Sprühkühlung bereitgestellt und beim Vergleich mit anderen experimentellen Daten aus der Literatur bestätigt. Es werden halbempirische Modelle sowohl für das Sekundärspray als auch für die charakteristische Filmdicke aufgestellt. Typische Filmdickenwerte werden zur Beschreibung der Sprühkühlungseffizienz verwendet.

German
Uncontrolled Keywords: spray cooling , spray impact , gravity
Alternative keywords:
Alternative keywordsLanguage
Sprühkühlung , Sprayaufprall , GravitationGerman
Classification DDC: 500 Science and mathematics > 500 Science
500 Science and mathematics > 530 Physics
600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
600 Technology, medicine, applied sciences > 600 Technology
Divisions: 16 Department of Mechanical Engineering > Fluid Mechanics and Aerodynamics (SLA)
16 Department of Mechanical Engineering
Date Deposited: 04 Aug 2010 14:02
Last Modified: 05 Mar 2013 09:36
PPN:
Referees: Roisman, Priv.-Doz. I. V. ; Tropea, Prof. Dr.- C. ; Moreira, Prof. Dr.- A.
Refereed / Verteidigung / mdl. Prüfung: 21 June 2010
Alternative keywords:
Alternative keywordsLanguage
Sprühkühlung , Sprayaufprall , GravitationGerman
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details