TU Darmstadt / ULB / TUbiblio

The Invariant Complex Structure on the Homogeneous Space Diff(S1)/Rot(S1)

Hofmann-Kliemt, Matthias (2007)
The Invariant Complex Structure on the Homogeneous Space Diff(S1)/Rot(S1).
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

Let Diff(S1) be the Frechet-Lie group of orientation preserving diffeomorphisms of the unit circle S1. Let Rot(S1) be the subgroup of metric preserving rotations. The homogeneous space M=Diff(S1)/Rot(S1) has a structure of a Frechet manifold. In this thesis, it is shown that on M there exists exactly one complexe structure up to sign which is invariant under the action of Diff(S1) on M.

Item Type: Ph.D. Thesis
Erschienen: 2007
Creators: Hofmann-Kliemt, Matthias
Type of entry: Primary publication
Title: The Invariant Complex Structure on the Homogeneous Space Diff(S1)/Rot(S1)
Language: English
Referees: Püttmann, PD Dr. Thomas
Advisors: Neeb, Prof. Dr. Karl-Hermann
Date: 11 July 2007
Place of Publication: Darmstadt
Publisher: Technische Universität
Refereed: 23 January 2007
URL / URN: urn:nbn:de:tuda-tuprints-8468
Abstract:

Let Diff(S1) be the Frechet-Lie group of orientation preserving diffeomorphisms of the unit circle S1. Let Rot(S1) be the subgroup of metric preserving rotations. The homogeneous space M=Diff(S1)/Rot(S1) has a structure of a Frechet manifold. In this thesis, it is shown that on M there exists exactly one complexe structure up to sign which is invariant under the action of Diff(S1) on M.

Alternative Abstract:
Alternative abstract Language

Es sei Diff(S1) die Frechet-Lie-Gruppe der orientierungserhaltenden Diffeomorphismen des Einheitskreises. Sei Rot(S1) die Untergruppe der starren Rotationen. Dann ist der homogene Raum M=Diff(S1)/Rot(S1) eine Frechet-Mannigfaltigkeit. In dieser Arbeit wird gezeigt, dass es auf M bis auf ein Vorzeichen genau eine komplexe Struktur gibt, die unter der Wirkung von Diff(S1) invariant ist.

German
Uncontrolled Keywords: Kreisgruppe, Diffeomorphismengruppe, homogener Raum, invariante komplexe Struktur, fast-komplexe Struktur, Frechet-Mannigfaltigkeit, zahmer Frechet-Raum, quasikonforme Abbildung, Birkhoff-Zerlegung, Satz von Nash-Moser, Hilbert-Transformation, Riemannscher Abbildungssatz
Alternative keywords:
Alternative keywordsLanguage
circle group, diffeomorphism group, homogeneous space, invariant complex structure, Frechet-manifold, tame Frechet-space, quasiconformal mapping, Birkhoff-decomposition, Nash-Moser-Theorem, Hilbert transformation, Riemann Mapping TheoremEnglish
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics
Date Deposited: 17 Oct 2008 09:22
Last Modified: 26 Aug 2018 21:25
PPN:
Referees: Püttmann, PD Dr. Thomas
Refereed / Verteidigung / mdl. Prüfung: 23 January 2007
Alternative keywords:
Alternative keywordsLanguage
circle group, diffeomorphism group, homogeneous space, invariant complex structure, Frechet-manifold, tame Frechet-space, quasiconformal mapping, Birkhoff-decomposition, Nash-Moser-Theorem, Hilbert transformation, Riemann Mapping TheoremEnglish
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details