TU Darmstadt / ULB / TUbiblio

Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles

Nadarajah, Ruksan ; Landers, Joachim ; Salamon, Soma ; Koch, David ; Tahir, Shabbir ; Doñate-Buendía, Carlos ; Zingsem, Benjamin ; Dunin-Borkowski, Rafal E. ; Donner, Wolfgang ; Farle, Michael ; Wende, Heiko ; Gökce, Bilal (2021)
Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles.
In: Scientific Reports, 11 (1)
doi: 10.1038/s41598-021-92760-5
Article, Bibliographie

This is the latest version of this item.

Abstract

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO₂ emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink’s γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am²/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am²/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.

Item Type: Article
Erschienen: 2021
Creators: Nadarajah, Ruksan ; Landers, Joachim ; Salamon, Soma ; Koch, David ; Tahir, Shabbir ; Doñate-Buendía, Carlos ; Zingsem, Benjamin ; Dunin-Borkowski, Rafal E. ; Donner, Wolfgang ; Farle, Michael ; Wende, Heiko ; Gökce, Bilal
Type of entry: Bibliographie
Title: Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles
Language: English
Date: 2 July 2021
Place of Publication: London
Publisher: Springer Nature
Journal or Publication Title: Scientific Reports
Volume of the journal: 11
Issue Number: 1
Collation: 12 Seiten
DOI: 10.1038/s41598-021-92760-5
Corresponding Links:
Abstract:

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO₂ emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink’s γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am²/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am²/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.

Uncontrolled Keywords: Lasers, LEDs and light sources, Magnetic properties and materials, Nanoscale materials
Identification Number: Artikel-ID: 13719
Additional Information:

A Publisher Correction to this article was published on 27 August 2021

Classification DDC: 500 Science and mathematics > 530 Physics
600 Technology, medicine, applied sciences > 660 Chemical engineering
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Structure Research
Date Deposited: 26 Sep 2024 07:24
Last Modified: 26 Sep 2024 07:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details