This is the latest version of this item.
Abstract
Several areas of wireless networking, such as wireless sensor networks or the Internet of Things, require application data to be distributed to multiple receivers in an area beyond the transmission range of a single node. This can be achieved by using the wireless medium’s broadcast property when retransmitting data. Due to the energy constraints of typical wireless devices, a broadcasting scheme that consumes as little energy as possible is highly desirable. In this article, we present a novel multi-hop data dissemination protocol called BTP. It uses a game-theoretical model to construct a spanning tree in a decentralized manner to minimize the total energy consumption of a network by minimizing the transmission power of each node. Although BTP is based on a game-theoretical model, it neither requires information exchange between distant nodes nor time synchronization during its operation, and it inhibits graph cycles effectively. The protocol is evaluated in Matlab and NS-3 simulations and through real-world implementation on a testbed of 75 Raspberry Pis. The evaluation conducted shows that our proposed protocol can achieve a total energy reduction of up to 90% compared to a simple broadcast protocol in real-world experiments.
Item Type: |
Article
|
Erschienen: |
2023 |
Creators: |
Sterz, Artur ; Klose, Robin ; Sommer, Markus ; Höchst, Jonas ; Link, Jakob ; Simon, Bernd ; Klein, Anja ; Hollick, Matthias ; Freisleben, Bernd |
Type of entry: |
Bibliographie |
Title: |
Energy-Efficient Decentralized Broadcasting in Wireless Multi-Hop Networks |
Language: |
English |
Date: |
2023 |
Publisher: |
MDPI |
Journal or Publication Title: |
Sensors |
Volume of the journal: |
23 |
Issue Number: |
17 |
Collation: |
25 Seiten |
DOI: |
10.3390/s23177419 |
Corresponding Links: |
|
Abstract: |
Several areas of wireless networking, such as wireless sensor networks or the Internet of Things, require application data to be distributed to multiple receivers in an area beyond the transmission range of a single node. This can be achieved by using the wireless medium’s broadcast property when retransmitting data. Due to the energy constraints of typical wireless devices, a broadcasting scheme that consumes as little energy as possible is highly desirable. In this article, we present a novel multi-hop data dissemination protocol called BTP. It uses a game-theoretical model to construct a spanning tree in a decentralized manner to minimize the total energy consumption of a network by minimizing the transmission power of each node. Although BTP is based on a game-theoretical model, it neither requires information exchange between distant nodes nor time synchronization during its operation, and it inhibits graph cycles effectively. The protocol is evaluated in Matlab and NS-3 simulations and through real-world implementation on a testbed of 75 Raspberry Pis. The evaluation conducted shows that our proposed protocol can achieve a total energy reduction of up to 90% compared to a simple broadcast protocol in real-world experiments. |
Uncontrolled Keywords: |
wireless networks, data dissemination, broadcast tree, emergenCITY, emergenCITY_KOM |
Additional Information: |
This paper is an extended version of our paper published in the 48th IEEE Conference on Local Computer Networks, Daytona Beach, FL, USA, 1–5 October 2023 (accepted for publication).
This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems |
Classification DDC: |
000 Generalities, computers, information > 004 Computer science 600 Technology, medicine, applied sciences > 621.3 Electrical engineering, electronics |
Divisions: |
18 Department of Electrical Engineering and Information Technology 18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications 18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications > Communications Engineering 20 Department of Computer Science 20 Department of Computer Science > Sichere Mobile Netze DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > A: Construction Methodology > Subproject A3: Migration DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms > Subproject B3: Economics of Adaption DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C1: Network-centred perspective DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C5: Context-Centered Perspective |
Date Deposited: |
02 Aug 2024 12:55 |
Last Modified: |
28 Nov 2024 12:29 |
PPN: |
|
Export: |
|
Suche nach Titel in: |
TUfind oder in Google |
Available Versions of this Item
|
Send an inquiry |
Options (only for editors)
|
Show editorial Details |