Häuser, Kevin ; Zhou, Zhiren ; Agrawal, Prannoy ; Jakoby, Rolf ; Maune, Holger ; Binder, Joachim R. (2023)
Network-Structured BST/MBO Composites Made from Core-Shell-Structured Granulates.
In: Materials, 16 (2)
doi: 10.3390/ma16020710
Article, Bibliographie
This is the latest version of this item.
Abstract
A finite element method (FEM)-based simulation approach to predict the tunability in composite materials was developed and tested with analytical data. These tests showed good prediction capabilities of the simulation for the test data. The simulation model was then used to predict the tunability of a network-structured composite, where the dielectric phase formed clusters in a paraelectric network. This was achieved by simulating a reciprocal core-shell unit cell of said network. The simulation showed a high tunability for this network model, exceeding the tunability of the analytically evaluated layered, columnar, and particulate model. The simulation results were experimentally verified with a Ba₀.₆Sr₀.₄TiO₃/Mg₃B₂O₆ (BST/MBO) composite, where core-shell granulates were made with a two-step granulation process. These structured samples showed higher tunability and dielectric loss than the unstructured samples made for comparison. Overall, the structured samples showed higher tunability to loss ratios, indicating their potential for use in tunable radio frequency applications, since they may combine high performance with little energy loss.
Item Type: | Article |
---|---|
Erschienen: | 2023 |
Creators: | Häuser, Kevin ; Zhou, Zhiren ; Agrawal, Prannoy ; Jakoby, Rolf ; Maune, Holger ; Binder, Joachim R. |
Type of entry: | Bibliographie |
Title: | Network-Structured BST/MBO Composites Made from Core-Shell-Structured Granulates |
Language: | English |
Date: | 2023 |
Place of Publication: | Darmstadt |
Publisher: | MDPI |
Journal or Publication Title: | Materials |
Volume of the journal: | 16 |
Issue Number: | 2 |
Collation: | 16 Seiten |
DOI: | 10.3390/ma16020710 |
Corresponding Links: | |
Abstract: | A finite element method (FEM)-based simulation approach to predict the tunability in composite materials was developed and tested with analytical data. These tests showed good prediction capabilities of the simulation for the test data. The simulation model was then used to predict the tunability of a network-structured composite, where the dielectric phase formed clusters in a paraelectric network. This was achieved by simulating a reciprocal core-shell unit cell of said network. The simulation showed a high tunability for this network model, exceeding the tunability of the analytically evaluated layered, columnar, and particulate model. The simulation results were experimentally verified with a Ba₀.₆Sr₀.₄TiO₃/Mg₃B₂O₆ (BST/MBO) composite, where core-shell granulates were made with a two-step granulation process. These structured samples showed higher tunability and dielectric loss than the unstructured samples made for comparison. Overall, the structured samples showed higher tunability to loss ratios, indicating their potential for use in tunable radio frequency applications, since they may combine high performance with little energy loss. |
Uncontrolled Keywords: | ceramic composite, FEM, tunability, dielectric behavior |
Additional Information: | This article belongs to the Special Issue Advances in Synthesis and Characterization of Dielectric Ceramics |
Classification DDC: | 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering |
Divisions: | 18 Department of Electrical Engineering and Information Technology 18 Department of Electrical Engineering and Information Technology > Institute for Microwave Engineering and Photonics (IMP) |
Date Deposited: | 02 Aug 2024 12:49 |
Last Modified: | 02 Aug 2024 12:49 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Available Versions of this Item
-
Network-Structured BST/MBO Composites Made from Core-Shell-Structured Granulates. (deposited 24 Feb 2023 09:55)
- Network-Structured BST/MBO Composites Made from Core-Shell-Structured Granulates. (deposited 02 Aug 2024 12:49) [Currently Displayed]
Send an inquiry |
Options (only for editors)
Show editorial Details |