TU Darmstadt / ULB / TUbiblio

Radon Adsorption in Charcoal

Maier, Andreas ; Jones, Jesse ; Sternkopf, Sonja ; Friedrich, Erik ; Fournier, Claudia ; Kraft, Gerhard (2022)
Radon Adsorption in Charcoal.
In: International Journal of Environmental Research and Public Health, 18 (9)
doi: 10.3390/ijerph18094454
Article, Bibliographie

This is the latest version of this item.

Abstract

Radon is pervasive in our environment and the second leading cause of lung cancer induction after smoking. Therefore, the measurement of radon activity concentrations in homes is important. The use of charcoal is an easy and cost-efficient method for this purpose, as radon can bind to charcoal via Van der Waals interaction. Admittedly, there are potential influencing factors during exposure that can distort the results and need to be investigated. Consequently, charcoal was exposed in a radon chamber at different parameters. Afterward, the activity of the radon decay products 214Pb and 214Bi was measured and extrapolated to the initial radon activity in the sample. After an exposure of 1 h, around 94% of the maximum value was attained and used as a limit for the subsequent exposure time. Charcoal was exposed at differing humidity ranging from 5 to 94%, but no influence on radon adsorption could be detected. If the samples were not sealed after exposure, radon desorbed with an effective half-life of around 31 h. There is also a strong dependence of radon uptake on the chemical structure of the recipient material, which is interesting for biological materials or diffusion barriers as this determines accumulation and transport.

Item Type: Article
Erschienen: 2022
Creators: Maier, Andreas ; Jones, Jesse ; Sternkopf, Sonja ; Friedrich, Erik ; Fournier, Claudia ; Kraft, Gerhard
Type of entry: Bibliographie
Title: Radon Adsorption in Charcoal
Language: English
Date: 2022
Publisher: MDPI
Journal or Publication Title: International Journal of Environmental Research and Public Health
Volume of the journal: 18
Issue Number: 9
Collation: 7 Seiten
DOI: 10.3390/ijerph18094454
Corresponding Links:
Abstract:

Radon is pervasive in our environment and the second leading cause of lung cancer induction after smoking. Therefore, the measurement of radon activity concentrations in homes is important. The use of charcoal is an easy and cost-efficient method for this purpose, as radon can bind to charcoal via Van der Waals interaction. Admittedly, there are potential influencing factors during exposure that can distort the results and need to be investigated. Consequently, charcoal was exposed in a radon chamber at different parameters. Afterward, the activity of the radon decay products 214Pb and 214Bi was measured and extrapolated to the initial radon activity in the sample. After an exposure of 1 h, around 94% of the maximum value was attained and used as a limit for the subsequent exposure time. Charcoal was exposed at differing humidity ranging from 5 to 94%, but no influence on radon adsorption could be detected. If the samples were not sealed after exposure, radon desorbed with an effective half-life of around 31 h. There is also a strong dependence of radon uptake on the chemical structure of the recipient material, which is interesting for biological materials or diffusion barriers as this determines accumulation and transport.

Uncontrolled Keywords: radon, charcoal, adsorption, desorption
Classification DDC: 500 Science and mathematics > 530 Physics
Divisions: 05 Department of Physics
05 Department of Physics > Institute of Nuclear Physics
Date Deposited: 02 Aug 2024 12:37
Last Modified: 02 Aug 2024 12:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details