TU Darmstadt / ULB / TUbiblio

Evaluation of Sulfuric Acid-Induced Degradation of Potassium Silicate Activated Metakaolin Geopolymers by Semi-Quantitative SEM-EDX Analysis

Vogt, Oliver ; Ballschmiede, Conrad ; Ukrainczyk, Neven ; Koenders, Eddie (2020)
Evaluation of Sulfuric Acid-Induced Degradation of Potassium Silicate Activated Metakaolin Geopolymers by Semi-Quantitative SEM-EDX Analysis.
In: Materials, 13 (20)
doi: 10.3390/ma13204522
Article, Bibliographie

This is the latest version of this item.

Abstract

Geopolymers are synthesized by mixing powdery solids, rich in amorphous silicon and aluminum species, with an alkaline solution, which leads to the formation of an inorganic alumosilicate network. Their acid resistance is affected by the composition, the porosity, and pore size distribution of the hardened binder as well as the type and concentration of the acidic solution. In the present study, two geopolymer mixtures with varying liquid-to-solid ratios and Si/Al ratios were exposed to a sulfuric acid solution (pH = 1) and analyzed after different durations of exposure (7, 14, 28, 56, and 70 days) by using a light microscope and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). SEM-EDX elemental mapping was used to evaluate the degradation from depth profiles of silicon (Si), aluminum (Al), and potassium (K) leaching. The results clearly show the leaching kinetics of potassium and the dealumination of the network. The separate consideration of specific reaction steps in the course of degradation, namely the depth of erosion (DE), the depth of deterioration (DD), and the depth of reaction for certain elements (DR(e)), indicate a combination of chemical and diffusion controlled degradation mechanisms.

Item Type: Article
Erschienen: 2020
Creators: Vogt, Oliver ; Ballschmiede, Conrad ; Ukrainczyk, Neven ; Koenders, Eddie
Type of entry: Bibliographie
Title: Evaluation of Sulfuric Acid-Induced Degradation of Potassium Silicate Activated Metakaolin Geopolymers by Semi-Quantitative SEM-EDX Analysis
Language: English
Date: 2020
Publisher: MDPI
Journal or Publication Title: Materials
Volume of the journal: 13
Issue Number: 20
Collation: 23 Seiten
DOI: 10.3390/ma13204522
Corresponding Links:
Abstract:

Geopolymers are synthesized by mixing powdery solids, rich in amorphous silicon and aluminum species, with an alkaline solution, which leads to the formation of an inorganic alumosilicate network. Their acid resistance is affected by the composition, the porosity, and pore size distribution of the hardened binder as well as the type and concentration of the acidic solution. In the present study, two geopolymer mixtures with varying liquid-to-solid ratios and Si/Al ratios were exposed to a sulfuric acid solution (pH = 1) and analyzed after different durations of exposure (7, 14, 28, 56, and 70 days) by using a light microscope and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). SEM-EDX elemental mapping was used to evaluate the degradation from depth profiles of silicon (Si), aluminum (Al), and potassium (K) leaching. The results clearly show the leaching kinetics of potassium and the dealumination of the network. The separate consideration of specific reaction steps in the course of degradation, namely the depth of erosion (DE), the depth of deterioration (DD), and the depth of reaction for certain elements (DR(e)), indicate a combination of chemical and diffusion controlled degradation mechanisms.

Classification DDC: 600 Technology, medicine, applied sciences > 600 Technology
600 Technology, medicine, applied sciences > 690 Building and construction
Divisions: 13 Department of Civil and Environmental Engineering Sciences
13 Department of Civil and Environmental Engineering Sciences > Institute of Construction and Building Materials
Date Deposited: 02 Aug 2024 12:35
Last Modified: 02 Aug 2024 12:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details