TU Darmstadt / ULB / TUbiblio

Optimality of Serrin type extension criteria to the Navier-Stokes equations

Farwig, Reinhard ; Kanamaru, Ryo (2020)
Optimality of Serrin type extension criteria to the Navier-Stokes equations.
In: Advances in Nonlinear Analysis, 10 (1)
doi: 10.1515/anona-2020-0130
Article, Bibliographie

This is the latest version of this item.

Abstract

We prove that a strong solution u to the Navier-Stokes equations on (0, T) can be extended if either u ∈ L θ (0, T; U˙ −α ∞,1/θ,∞) for 2/θ + α = 1, 0 < α < 1 or u ∈ L 2 (0, T; V˙ 0 ∞,∞,2 ) , where U˙ s p,β,σ and V˙ s p,q,θ are Banach spaces that may be larger than the homogeneous Besov space B˙ s p,q. Our method is based on a bilinear estimate and a logarithmic interpolation inequality.

Item Type: Article
Erschienen: 2020
Creators: Farwig, Reinhard ; Kanamaru, Ryo
Type of entry: Bibliographie
Title: Optimality of Serrin type extension criteria to the Navier-Stokes equations
Language: English
Date: 2020
Publisher: De Gruyter
Journal or Publication Title: Advances in Nonlinear Analysis
Volume of the journal: 10
Issue Number: 1
DOI: 10.1515/anona-2020-0130
Corresponding Links:
Abstract:

We prove that a strong solution u to the Navier-Stokes equations on (0, T) can be extended if either u ∈ L θ (0, T; U˙ −α ∞,1/θ,∞) for 2/θ + α = 1, 0 < α < 1 or u ∈ L 2 (0, T; V˙ 0 ∞,∞,2 ) , where U˙ s p,β,σ and V˙ s p,q,θ are Banach spaces that may be larger than the homogeneous Besov space B˙ s p,q. Our method is based on a bilinear estimate and a logarithmic interpolation inequality.

Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics
04 Department of Mathematics > Analysis
Date Deposited: 02 Aug 2024 12:35
Last Modified: 02 Aug 2024 12:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details