Bolz, Philipp ; Drechsel, Philipp ; Prosvetov, Alexey ; Simon, Pascal ; Trautmann, Christina ; Tomut, Marilena ; Lallart, Mickael (2021)
Dynamic radiation effects induced by short-pulsed GeV U-ion beams in graphite and h-BN targets.
In: Shock and Vibration
doi: 10.1155/2021/8825142
Article, Bibliographie
Abstract
Targets of isotropic graphite and hexagonal boron nitride were exposed to short pulses of uranium ions with ∼1 GeV kinetic energy. The deposited power density of ∼3 MW/cm³ generates thermal stress in the samples leading to pressure waves. The velocity of the respective motion of the target surface was measured by laser Doppler vibrometry. The bending modes are identified as the dominant components in the velocity signal recorded as a function of time. With accumulated radiation damage, the bending mode frequency shifts towards higher values. Based on this shift, Young’s modulus of irradiated isotropic graphite is determined by comparison with ANSYS simulations. The increase of Young’s modulus up to 3 times the pristine value for the highest accumulated fluence of 3 × 1013 ions/cm2 is attributed to the beam-induced microstructural evolution into a disordered structure similar to glassy carbon. Young’s modulus values deduced from microindentation measurements are similar, confirming the validity of the method. Beam-induced stress waves remain in the elastic regime, and no large-scale damage can be observed in graphite. Hexagonal boron nitride shows lower radiation resistance. Circular cracks are generated already at low fluences, risking material failure when applied in high-dose environment.
Item Type: | Article |
---|---|
Erschienen: | 2021 |
Creators: | Bolz, Philipp ; Drechsel, Philipp ; Prosvetov, Alexey ; Simon, Pascal ; Trautmann, Christina ; Tomut, Marilena ; Lallart, Mickael |
Type of entry: | Bibliographie |
Title: | Dynamic radiation effects induced by short-pulsed GeV U-ion beams in graphite and h-BN targets |
Language: | English |
Date: | 18 September 2021 |
Publisher: | IOS Press |
Journal or Publication Title: | Shock and Vibration |
Collation: | 11 Seiten |
DOI: | 10.1155/2021/8825142 |
Abstract: | Targets of isotropic graphite and hexagonal boron nitride were exposed to short pulses of uranium ions with ∼1 GeV kinetic energy. The deposited power density of ∼3 MW/cm³ generates thermal stress in the samples leading to pressure waves. The velocity of the respective motion of the target surface was measured by laser Doppler vibrometry. The bending modes are identified as the dominant components in the velocity signal recorded as a function of time. With accumulated radiation damage, the bending mode frequency shifts towards higher values. Based on this shift, Young’s modulus of irradiated isotropic graphite is determined by comparison with ANSYS simulations. The increase of Young’s modulus up to 3 times the pristine value for the highest accumulated fluence of 3 × 1013 ions/cm2 is attributed to the beam-induced microstructural evolution into a disordered structure similar to glassy carbon. Young’s modulus values deduced from microindentation measurements are similar, confirming the validity of the method. Beam-induced stress waves remain in the elastic regime, and no large-scale damage can be observed in graphite. Hexagonal boron nitride shows lower radiation resistance. Circular cracks are generated already at low fluences, risking material failure when applied in high-dose environment. |
Additional Information: | Artikel-ID: 8825142 |
Divisions: | 11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Ion-Beam-Modified Materials |
Date Deposited: | 27 Feb 2024 06:55 |
Last Modified: | 27 Feb 2024 06:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |