TU Darmstadt / ULB / TUbiblio

The influence of chemical and mineral compositions on the parameterization of immersion freezing by volcanic ash particles

Umo, N. S. ; Ullrich, R. ; Maters, E. C. ; Steinke, I. ; Benker, N. ; Höhler, K. ; Wagner, R. ; Weidler, P. G. ; Hoshyaripour, G. A. ; Kiselev, A. ; Kueppers, U. ; Kandler, K. ; Dingwell, D. B. ; Leisner, T. ; Möhler, O. (2021)
The influence of chemical and mineral compositions on the parameterization of immersion freezing by volcanic ash particles.
In: Journal of Geophysical Research: Atmospheres, 126 (17)
doi: 10.1029/2020JD033356
Article, Bibliographie

This is the latest version of this item.

Abstract

Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼10⁵ to 10¹¹ m⁻², respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice‐nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds.

Item Type: Article
Erschienen: 2021
Creators: Umo, N. S. ; Ullrich, R. ; Maters, E. C. ; Steinke, I. ; Benker, N. ; Höhler, K. ; Wagner, R. ; Weidler, P. G. ; Hoshyaripour, G. A. ; Kiselev, A. ; Kueppers, U. ; Kandler, K. ; Dingwell, D. B. ; Leisner, T. ; Möhler, O.
Type of entry: Bibliographie
Title: The influence of chemical and mineral compositions on the parameterization of immersion freezing by volcanic ash particles
Language: English
Date: 2021
Place of Publication: Hoboken
Publisher: Wiley
Journal or Publication Title: Journal of Geophysical Research: Atmospheres
Volume of the journal: 126
Issue Number: 17
Collation: 27 Seiten
DOI: 10.1029/2020JD033356
Corresponding Links:
Abstract:

Volcanic ash (VA) from explosive eruptions contributes to aerosol loadings in the atmosphere. Aside from the negative impact of VA on air quality and aviation, these particles can alter the optical and microphysical properties of clouds by triggering ice formation, thereby influencing precipitation and climate. Depending on the volcano and eruption style, VA displays a wide range of different physical, chemical, and mineralogical properties. Here, we present a unique data set on the ice nucleation activity of 15 VA samples obtained from different volcanoes worldwide. The ice nucleation activities of these samples were studied in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud simulation chamber as well as with the Ice Nucleation Spectrometer of the Karlsruhe Institute of Technology (INSEKT). All VA particles nucleated ice in the immersion freezing mode from 263 to 238K with ice nucleation active site (INAS) densities ranging from ∼10⁵ to 10¹¹ m⁻², respectively. The variabilities observed among the VA samples, at any given temperature, range over 3.5 orders of magnitude. The ice‐nucleating abilities of VA samples correlate to varying degrees with their bulk pyroxene and plagioclase contents as a function of temperature. We combined our new data set with existing literature data to develop an improved ice nucleation parameterization for natural VA in the immersion freezing mode. This should be useful for modeling the impact of VA on clouds.

Uncontrolled Keywords: aerosol, chemical composition, cloud chamber, ice nucleation, mineralogy, mixed‐phase clouds, parameterization, volcanic ash
Identification Number: Artikel-ID: e2020JD033356
Classification DDC: 500 Science and mathematics > 550 Earth sciences and geology
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Earth Science
11 Department of Materials and Earth Sciences > Earth Science > Atmospheric Aerosol
Date Deposited: 14 Feb 2024 08:01
Last Modified: 14 Feb 2024 08:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details