TU Darmstadt / ULB / TUbiblio

ZnO nanowire networks as photoanode model systems for photoelectrochemical applications

Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia (2018)
ZnO nanowire networks as photoanode model systems for photoelectrochemical applications.
In: Nanomaterials, 8 (9)
doi: 10.3390/nano8090693
Article, Bibliographie

This is the latest version of this item.

Abstract

In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.

Item Type: Article
Erschienen: 2018
Creators: Movsesyan, Liana ; Maijenburg, Albert Wouter ; Goethals, Noel ; Sigle, Wilfried ; Spende, Anne ; Yang, Florent ; Kaiser, Bernhard ; Jaegermann, Wolfram ; Park, Sun-Young ; Mul, Guido ; Trautmann, Christina ; Toimil-Molares, Maria Eugenia
Type of entry: Bibliographie
Title: ZnO nanowire networks as photoanode model systems for photoelectrochemical applications
Language: English
Date: 2018
Place of Publication: Basel
Publisher: MDPI
Journal or Publication Title: Nanomaterials
Volume of the journal: 8
Issue Number: 9
Collation: 14 Seiten
DOI: 10.3390/nano8090693
Corresponding Links:
Abstract:

In this work, the fabrication of zinc oxide (ZnO) nanowire networks is presented. By combining ion-track technology, electrochemical deposition, and atomic layer deposition, hierarchical and self-supporting three-dimensional (3D) networks of pure ZnO- and TiO₂-coated ZnO nanowires were synthesized. Analysis by means of high-resolution transmission electron microscopy revealed a highly crystalline structure of the electrodeposited ZnO wires and the anatase phase of the TiO₂ coating. In photoelectrochemical measurements, the ZnO and ZnO/TiO₂ nanowire networks, used as anodes, generated higher photocurrents compared to those produced by their film counterparts. The ZnO/TiO₂ nanowire network exhibited the highest photocurrents. However, the protection by the TiO₂ coatings against chemical corrosion still needs improvement. The one-dimensionality of the nanowires and the large electrolyte-accessible area make these 3D networks promising photoelectrodes, due to the improved transport properties of photogenerated charge carriers and faster redox reactions at the surface. Moreover, they can find further applications in e.g., sensing, catalytical, and piezoelectric devices.

Uncontrolled Keywords: etched ion-track membrane, electrodeposition, nanowire network, core-shell nanowires, ZnO, TiO₂, photoelectrochemical applications, water splitting
Additional Information:

This article belongs to the Special Issue Synthesis and Characterization of Nanowires

Classification DDC: 500 Science and mathematics > 540 Chemistry
600 Technology, medicine, applied sciences > 660 Chemical engineering
Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Ion-Beam-Modified Materials
11 Department of Materials and Earth Sciences > Material Science > Surface Science
Date Deposited: 17 Jan 2024 09:23
Last Modified: 07 Mar 2024 07:44
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details