Pai, H. ; Beck, T. ; Beller, J. ; Beyer, R. ; Bhike, M. ; Derya, V. ; Gayer, U. ; Isaak, J. ; Krishichayan, ; Kvasil, J. ; Löher, B. ; Nesterenko, V. O. ; Pietralla, N. ; Martínez-Pinedo, G. ; Mertes, L. ; Ponomarev, V. Yu. ; Reinhard, P.-G. ; Repko, A. ; Ries, P. C. ; Romig, C. ; Savran, D. ; Schwengner, R. ; Tornow, W. ; Werner, V. ; Wilhelmy, J. ; Zilges, A. ; Zweidinger, M. (2016)
Magnetic dipole excitations of Cr-50.
In: Physical Review C, 93 (1)
doi: 10.1103/PhysRevC.93.014318
Article, Bibliographie
Abstract
The low-lying M1 strength of the open-shell nucleus 50Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen 1+ states have been observed between 3.6 and 9.7 MeV. Following our analysis the lowest 1+ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme quasiparticle random-phase-approximation method and the large-scale shell model justify our conclusions. The calculated distributions of the orbital current for the lowest 1+-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the fp shell.
Item Type: | Article |
---|---|
Erschienen: | 2016 |
Creators: | Pai, H. ; Beck, T. ; Beller, J. ; Beyer, R. ; Bhike, M. ; Derya, V. ; Gayer, U. ; Isaak, J. ; Krishichayan, ; Kvasil, J. ; Löher, B. ; Nesterenko, V. O. ; Pietralla, N. ; Martínez-Pinedo, G. ; Mertes, L. ; Ponomarev, V. Yu. ; Reinhard, P.-G. ; Repko, A. ; Ries, P. C. ; Romig, C. ; Savran, D. ; Schwengner, R. ; Tornow, W. ; Werner, V. ; Wilhelmy, J. ; Zilges, A. ; Zweidinger, M. |
Type of entry: | Bibliographie |
Title: | Magnetic dipole excitations of Cr-50 |
Language: | English |
Date: | 25 January 2016 |
Publisher: | American Physical Society |
Journal or Publication Title: | Physical Review C |
Volume of the journal: | 93 |
Issue Number: | 1 |
DOI: | 10.1103/PhysRevC.93.014318 |
Abstract: | The low-lying M1 strength of the open-shell nucleus 50Cr has been studied with the method of nuclear resonance fluorescence up to 9.7 MeV using bremsstrahlung at the superconducting Darmstadt linear electron accelerator S-DALINAC and Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility between 6 and 9.7 MeV of the initial photon energy. Fifteen 1+ states have been observed between 3.6 and 9.7 MeV. Following our analysis the lowest 1+ state at 3.6 MeV can be considered as an isovector orbital mode with some spin admixture. The obtained results generally match the estimations and trends typical for the scissors-like mode. Detailed calculations within the Skyrme quasiparticle random-phase-approximation method and the large-scale shell model justify our conclusions. The calculated distributions of the orbital current for the lowest 1+-state suggest the schematic view of Lipparini and Stringari (isovector rotation-like oscillations inside the rigid surface) rather than the scissors-like picture of Lo Iudice and Palumbo. The spin M1 resonance is shown to be mainly generated by spin-flip transitions between the orbitals of the fp shell. |
Uncontrolled Keywords: | DFG, SFB 634 |
Additional Information: | Art.No.: 014318 |
Divisions: | DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres 05 Department of Physics 05 Department of Physics > Institute of Nuclear Physics 05 Department of Physics > Institute of Nuclear Physics > Experimentelle Kernphysik 05 Department of Physics > Institute of Nuclear Physics > Experimentelle Kernphysik > Experimentelle Kernstruktur und S-DALINAC DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 634: Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments at Low Momentum Transfer at the Superconducting Darmstadt Accelerator (S-DALINAC) |
Date Deposited: | 20 Dec 2023 11:27 |
Last Modified: | 14 Feb 2024 13:49 |
PPN: | 515556491 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |