TU Darmstadt / ULB / TUbiblio

Understanding Stationary and Moving Direct Skin Vibrotactile Stimulation on the Palm

Elsayed, Hesham ; Weigel, Martin ; Müller, Florian ; Ibrahim, George ; Gugenheimer, Jan ; Schmitz, Martin ; Günther, Sebastian ; Mühlhäuser, Max (2023)
Understanding Stationary and Moving Direct Skin Vibrotactile Stimulation on the Palm.
doi: 10.48550/arXiv.2302.08820
Report, Bibliographie

Abstract

Palm-based tactile displays have the potential to evolve from single motor interfaces (e.g., smartphones) to high-resolution tactile displays (e.g., back-of-device haptic interfaces) enabling richer multi-modal experiences with more information. However, we lack a systematic understanding of vibrotactile perception on the palm and the influence of various factors on the core design decisions of tactile displays (number of actuators, resolution, and intensity). In a first experiment (N=16), we investigated the effect of these factors on the users' ability to localize stationary sensations. In a second experiment (N=20), we explored the influence of resolution on recognition rate for moving tactile sensations.Findings show that for stationary sensations a 9 actuator display offers a good trade-off and a 3×3 resolution can be accurately localized. For moving sensations, a 2×4 resolution led to the highest recognition accuracy, while 5×10 enables higher resolution output with a reasonable accuracy.

Item Type: Report
Erschienen: 2023
Creators: Elsayed, Hesham ; Weigel, Martin ; Müller, Florian ; Ibrahim, George ; Gugenheimer, Jan ; Schmitz, Martin ; Günther, Sebastian ; Mühlhäuser, Max
Type of entry: Bibliographie
Title: Understanding Stationary and Moving Direct Skin Vibrotactile Stimulation on the Palm
Language: English
Date: 2023
Publisher: arXiv
Series: Human-Computer Interaction
Edition: 1.Version
DOI: 10.48550/arXiv.2302.08820
Abstract:

Palm-based tactile displays have the potential to evolve from single motor interfaces (e.g., smartphones) to high-resolution tactile displays (e.g., back-of-device haptic interfaces) enabling richer multi-modal experiences with more information. However, we lack a systematic understanding of vibrotactile perception on the palm and the influence of various factors on the core design decisions of tactile displays (number of actuators, resolution, and intensity). In a first experiment (N=16), we investigated the effect of these factors on the users' ability to localize stationary sensations. In a second experiment (N=20), we explored the influence of resolution on recognition rate for moving tactile sensations.Findings show that for stationary sensations a 9 actuator display offers a good trade-off and a 3×3 resolution can be accurately localized. For moving sensations, a 2×4 resolution led to the highest recognition accuracy, while 5×10 enables higher resolution output with a reasonable accuracy.

Additional Information:

Preprint

Divisions: 20 Department of Computer Science
20 Department of Computer Science > Telecooperation
Date Deposited: 06 Jul 2023 07:03
Last Modified: 16 May 2024 14:44
PPN: 509301444
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details