TU Darmstadt / ULB / TUbiblio

Conflict Resolution in Autonomous Operations Area airspace

Barraci, Nima (2011)
Conflict Resolution in Autonomous Operations Area airspace.
Book, Secondary publication

WarningThere is a more recent version of this item available.

Abstract

A paradigm shift is at hand with the planned redesign of the Air Traffic Management and Air Traffic Control systems. The concept for the future air traffic system foresees that aircraft will monitor and maintain separation to each other by themselves in Autonomous Operations Area airspace. With this shift of responsibility for separation assurance from Air Traffic Control to the flight deck crews a more flexible and better airspace usage is expected. Furthermore, through the more flexible airspace usage, a gain in flight efficiency is also anticipated. In order to operate in this airspace area, aircraft are required to be equipped with a system enabling them to detect and resolve air traffic conflicts. Upon detection of a conflict with another aircraft, the system is expected to compute an alternative trajectory which guides the aircraft around the conflict and back to its original trajectory. The alternative trajectory needs to adhere to several requirements, such as being clear of conflicts and being flyable. Further requirements that are often stated are to minimise the additional fuel and time required for the resolution. This thesis is concerned with such a Conflict Detection & Resolution system. Primary focus lies on the resolution of air traffic conflicts while guaranteeing flyability and respecting the Cost Index. The Cost Index is nowadays used by the Flight Management System to optimise the flight profile in respect to the operators prioritisation of fuel-related to time-related costs. This paramter is included into the Conflict Resolution process which is based on Artificial Force Fields. Flyability of the trajectory is intended to be guaranteed through integration of a flight mechanics model. The algorithm devised in this work is validated in fast time simulations with varying Cost Index. Objects of study are the distance at the Closest Point of Approach, the integration of the Cost Index and the flyability of the resulting trajectory. The first two objects of this study will be validated through comparison of the original and updated trajectory. The new trajectory is considered conflict free if the distance at the Closest Point of Approach is sufficiently large. The lateral, vertical and temporal differences between the two trajectories are used as measures for time- and fuel-related costs. Flyability of the resulting trajectory is validated by confirming adherence to the flight envelope and the constraints given by the flight mechanics model used. The evaluation of the algorithm showed that by integration of a flight mechanics model flyability of the resulting trajectory could be assured. Regarding resolution of the conflicts, the algorithm could compute a trajectory which prevented the initially set up Mid-Air Collision between the aircraft. Though, the minimum required separation could not be achieved in all cases. The approach of integrating the Cost Index into the resolution process showed to be feasible, whereas especially regarding the speed resolution further enhancements have been found to be necessary.

Item Type: Book
Erschienen: 2011
Creators: Barraci, Nima
Type of entry: Secondary publication
Title: Conflict Resolution in Autonomous Operations Area airspace
Language: English
Referees: Uwe, Prof. Dr.- Klingauf ; Manfred, Prof. Dr.- Boltze
Date: 4 January 2011
Place of Publication: Darmstadt
Year of primary publication: 2010
Place of primary publication: München
Publisher: Hut
Refereed: 14 December 2009
URL / URN: https://tuprints.ulb.tu-darmstadt.de/2369
Abstract:

A paradigm shift is at hand with the planned redesign of the Air Traffic Management and Air Traffic Control systems. The concept for the future air traffic system foresees that aircraft will monitor and maintain separation to each other by themselves in Autonomous Operations Area airspace. With this shift of responsibility for separation assurance from Air Traffic Control to the flight deck crews a more flexible and better airspace usage is expected. Furthermore, through the more flexible airspace usage, a gain in flight efficiency is also anticipated. In order to operate in this airspace area, aircraft are required to be equipped with a system enabling them to detect and resolve air traffic conflicts. Upon detection of a conflict with another aircraft, the system is expected to compute an alternative trajectory which guides the aircraft around the conflict and back to its original trajectory. The alternative trajectory needs to adhere to several requirements, such as being clear of conflicts and being flyable. Further requirements that are often stated are to minimise the additional fuel and time required for the resolution. This thesis is concerned with such a Conflict Detection & Resolution system. Primary focus lies on the resolution of air traffic conflicts while guaranteeing flyability and respecting the Cost Index. The Cost Index is nowadays used by the Flight Management System to optimise the flight profile in respect to the operators prioritisation of fuel-related to time-related costs. This paramter is included into the Conflict Resolution process which is based on Artificial Force Fields. Flyability of the trajectory is intended to be guaranteed through integration of a flight mechanics model. The algorithm devised in this work is validated in fast time simulations with varying Cost Index. Objects of study are the distance at the Closest Point of Approach, the integration of the Cost Index and the flyability of the resulting trajectory. The first two objects of this study will be validated through comparison of the original and updated trajectory. The new trajectory is considered conflict free if the distance at the Closest Point of Approach is sufficiently large. The lateral, vertical and temporal differences between the two trajectories are used as measures for time- and fuel-related costs. Flyability of the resulting trajectory is validated by confirming adherence to the flight envelope and the constraints given by the flight mechanics model used. The evaluation of the algorithm showed that by integration of a flight mechanics model flyability of the resulting trajectory could be assured. Regarding resolution of the conflicts, the algorithm could compute a trajectory which prevented the initially set up Mid-Air Collision between the aircraft. Though, the minimum required separation could not be achieved in all cases. The approach of integrating the Cost Index into the resolution process showed to be feasible, whereas especially regarding the speed resolution further enhancements have been found to be necessary.

Alternative Abstract:
Alternative abstract Language

Das Flugsicherungs- und Flugverkehrsmanagementsystem steht vor einem Paradigmenwechsel. Flugzeuge werden zukünftig im so genannten Autonomous Operations Area Luftraum selbst für die Überwachung und Einhaltung der minimalen Separation verantwortlich sein. Von dieser Verlagerung der Verantwortlichkeit von der Flugsicherung an die Flugdeckbesatzung wird sich sowohl eine bessere und flexiblere Luftraumnutzung, als auch eine effizientere Flugdurchführung versprochen. Um in diesem Luftraum operieren zu können, müssen Flugzeuge mit technischen Systemen ausgestattet werden, die eine Erkennung und Lösung von Luftverkehrskonflikten ermöglichen. Ein solches System hat zur Aufgabe, Konflikte mit anderen Luftraumteilnehmern zu erkennen und eine alternative, konfliktfreie Trajektorie zu berechnen. Dabei werden an die Trajektorie neben der Konfliktfreiheit meist noch die Fliegbarkeit sowie die Berücksichtigung von Optimierungsparametern als Anforderungen gestellt. Zu diesen zählen vor allem die Minimierung des notwendigen Kraftstoffes bzw. der notwendigen Zeit für das Resolutionsmanöver. Die vorliegende Arbeit beschäftigt sich mit einem solchen System. Der Fokus liegt dabei auf der Lösung von Verkehrskonflikten unter gleichzeitiger Gewährleistung der Fliegbarkeit sowie der Integration eines Kostenindexes. Der Kostenindex, welcher heutzutage vom Flight Management System zur Bahnoptimierung verwendet wird, gibt das vom Flugzeugbetreiber angegebene Verhältnis von kraftstoffbezogenen zu zeitbezogenen Kosten an. Dieser Parameter wird im Rahmen dieser Arbeit in einen Konfliktlösungs- algorithmus auf Grundlage von künstlichen Kraftfeldern integriert. Die Fliegbarkeit der resultierenden Trajektorie wiederum wird durch Nutzung eines flugmechanischen Modells adressiert und bewertet. Der in dieser Arbeit entwickelte Algorithmus wird in Schnellzeitsimulationen mit variierendem Kostenindex bewertet. Ziel der Auswertungen ist es die Konfliktfreiheit und Fliegbarkeit der resultierenden Trajektorie, sowie die Berücksichtigung des Kostenindex zu überprüfen. Dazu werden die alternativen Trajektorien mit der originalen, konfliktbehafteten Trajektorie des Flugzeuges und die Entfernungen am Punkt der geringsten Annäherung verglichen. Die laterale, vertikale und temporale Abweichung der alternativen Trajektorie zur originalen Trajektorie werden als Maß für die kraftstoffbezogenen, respektive zeitbezogenen Kosten verwendet und gegenüber gestellt. Die Simulationsergebnisse zeigen, dass die Fliegbarkeit der Trajektorie durch die Integration des flugmechanischen Modells gewährleistet werden konnte. Während jedoch der provozierte Zusammenstoß der Flugzeuge durch den Konfliktlösungsalgorithmus auch in den betrachteten Grenzfällen verhindert werden konnte, wurde die minimal notwendige Separation nicht in jedem Fall hergestellt. Auch hat sich die Integration des Kostenindex als praktikabel gezeigt, wobei jedoch noch Verbesserungspotential vor allem in Bezug auf die Geschwindigkeitsresolution identifiziert werden konnte.

German
URN: urn:nbn:de:tuda-tuprints-23692
Additional Information:

Druckausg. der Dissertation: München : Hut, 2010. ISBN 978-3-86853-384-2

Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
000 Generalities, computers, information > 004 Computer science
Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Institute of Flight Systems and Automatic Control (FSR)
Date Deposited: 04 Jan 2011 07:49
Last Modified: 25 Jun 2024 10:50
PPN:
Referees: Uwe, Prof. Dr.- Klingauf ; Manfred, Prof. Dr.- Boltze
Refereed / Verteidigung / mdl. Prüfung: 14 December 2009
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details