TU Darmstadt / ULB / TUbiblio

Application of dense neural networks for manifold-based modeling of flame-wall interactions

Bissantz, Julian ; Karpowski, Jeremy ; Steinhausen, Matthias ; Luo, Yujuan ; Ferraro, Federica ; Scholtissek, Arne ; Hasse, Christian ; Vervisch, Luc (2023)
Application of dense neural networks for manifold-based modeling of flame-wall interactions.
In: Applications in Energy and Combustion Science, 13
doi: 10.1016/j.jaecs.2023.100113
Article, Bibliographie

Item Type: Article
Erschienen: 2023
Creators: Bissantz, Julian ; Karpowski, Jeremy ; Steinhausen, Matthias ; Luo, Yujuan ; Ferraro, Federica ; Scholtissek, Arne ; Hasse, Christian ; Vervisch, Luc
Type of entry: Bibliographie
Title: Application of dense neural networks for manifold-based modeling of flame-wall interactions
Language: English
Date: January 2023
Publisher: Elsevier
Journal or Publication Title: Applications in Energy and Combustion Science
Volume of the journal: 13
DOI: 10.1016/j.jaecs.2023.100113
URL / URN: https://www.sciencedirect.com/science/article/pii/S2666352X2...
Uncontrolled Keywords: Machine learning, Data-driven modeling, Manifold methods, Head-on quenching, Side-wall quenching
Additional Information:

Artikel-ID: 100113

Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Simulation of reactive Thermo-Fluid Systems (STFS)
Date Deposited: 20 Mar 2023 07:11
Last Modified: 20 Mar 2023 08:30
PPN: 506151565
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details