TU Darmstadt / ULB / TUbiblio

Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine

Dreher, Daniel ; Schmidt, Marius ; Welch, Cooper ; Ourza, Sara ; Zündorf, Samuel ; Maucher, Johannes ; Peters, Steven ; Dreizler, Andreas ; Böhm, Benjamin ; Hanuschkin, Alexander (2020)
Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine.
In: International Journal of Engine Research, 22 (11)
doi: 10.1177/1468087420974148
Article, Bibliographie

This is the latest version of this item.

Item Type: Article
Erschienen: 2020
Creators: Dreher, Daniel ; Schmidt, Marius ; Welch, Cooper ; Ourza, Sara ; Zündorf, Samuel ; Maucher, Johannes ; Peters, Steven ; Dreizler, Andreas ; Böhm, Benjamin ; Hanuschkin, Alexander
Type of entry: Bibliographie
Title: Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine
Language: English
Date: 4 December 2020
Publisher: Sage Publications
Journal or Publication Title: International Journal of Engine Research
Volume of the journal: 22
Issue Number: 11
DOI: 10.1177/1468087420974148
Corresponding Links:
Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Institute of Automotive Engineering (FZD)
16 Department of Mechanical Engineering > Institute of Reactive Flows and Diagnostics (RSM)
Date Deposited: 02 Sep 2022 06:14
Last Modified: 29 Nov 2023 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details