Köhs, L. ; Alt, B. ; Koeppl, H. (2022):
Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems.
pp. 11430-11454, 39th International Conference on Machine Learning, Baltimore, USA, 17.-23.07.2022, [Conference or Workshop Item]
Abstract
Switching dynamical systems are an expressive model class for the analysis of time-series data. As in many fields within the natural and engineering sciences, the systems under study typically evolve continuously in time, it is natural to consider continuous-time model formulations consisting of switching stochastic differential equations governed by an underlying Markov jump process. Inference in these types of models is however notoriously difficult, and tractable computational schemes are rare. In this work, we propose a novel inference algorithm utilizing a Markov Chain Monte Carlo approach. The presented Gibbs sampler allows to efficiently obtain samples from the exact continuous-time posterior processes. Our framework naturally enables Bayesian parameter estimation, and we also include an estimate for the diffusion covariance, which is oftentimes assumed fixed in stochastic differential equation models. We evaluate our framework under the modeling assumption and compare it against an existing variational inference approach.
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2022 |
Creators: | Köhs, L. ; Alt, B. ; Koeppl, H. |
Title: | Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems |
Language: | English |
Abstract: | Switching dynamical systems are an expressive model class for the analysis of time-series data. As in many fields within the natural and engineering sciences, the systems under study typically evolve continuously in time, it is natural to consider continuous-time model formulations consisting of switching stochastic differential equations governed by an underlying Markov jump process. Inference in these types of models is however notoriously difficult, and tractable computational schemes are rare. In this work, we propose a novel inference algorithm utilizing a Markov Chain Monte Carlo approach. The presented Gibbs sampler allows to efficiently obtain samples from the exact continuous-time posterior processes. Our framework naturally enables Bayesian parameter estimation, and we also include an estimate for the diffusion covariance, which is oftentimes assumed fixed in stochastic differential equation models. We evaluate our framework under the modeling assumption and compare it against an existing variational inference approach. |
Divisions: | 18 Department of Electrical Engineering and Information Technology 18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications > Bioinspired Communication Systems 18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms > Subproject B4: Planning |
Event Title: | 39th International Conference on Machine Learning |
Event Location: | Baltimore, USA |
Event Dates: | 17.-23.07.2022 |
Date Deposited: | 09 Jun 2022 09:18 |
URL / URN: | https://proceedings.mlr.press/v162/kohs22a.html |
PPN: | 501045155 |
Corresponding Links: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |