TU Darmstadt / ULB / TUbiblio

Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials

Fernández, Mauricio ; Fritzen, Felix ; Weeger, Oliver (2022)
Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials.
In: International Journal for Numerical Methods in Engineering, 123 (2)
doi: 10.1002/nme.6869
Article, Bibliographie

This is the latest version of this item.

Item Type: Article
Erschienen: 2022
Creators: Fernández, Mauricio ; Fritzen, Felix ; Weeger, Oliver
Type of entry: Bibliographie
Title: Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials
Language: English
Date: 30 January 2022
Publisher: Wiley
Journal or Publication Title: International Journal for Numerical Methods in Engineering
Volume of the journal: 123
Issue Number: 2
DOI: 10.1002/nme.6869
Corresponding Links:
Additional Information:

First published online: 01 November 2021

Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Cyber-Physical Simulation (CPS)
Date Deposited: 01 Feb 2022 06:31
Last Modified: 03 Jul 2024 02:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details