TU Darmstadt / ULB / TUbiblio

Dynamic fiducial markers for camera-based pose estimation

Acuña, Raul (2021)
Dynamic fiducial markers for camera-based pose estimation.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00017650
Ph.D. Thesis, Primary publication, Publisher's Version

Abstract

This dissertation introduces new techniques that increase the accuracy of camera-based pose estimation using fiducial markers. The problem of camera-based pose estimation involves finding a camera's pose relative to some coordinate system by detecting some known features in the environment; when the visual appearance of these features is known beforehand, they are called fiducials.

The visual-based pose estimation process is highly complex since the estimated pose accuracy depends on many interconnected factors that have to be considered simultaneously; this thesis aims to identify the most influential factors and proposes solutions that mitigate the effect of the sources of error, hence increasing the estimated pose's accuracy and robustness. We base our solutions on exploiting an interaction between the camera and what the camera is measuring; this, in essence, means that the features change and adapt to better suit the measurement by either moving in space to better locations or changing their shape dynamically.

Item Type: Ph.D. Thesis
Erschienen: 2021
Creators: Acuña, Raul
Type of entry: Primary publication
Title: Dynamic fiducial markers for camera-based pose estimation
Language: English
Referees: Adamy, Prof. Dr. Jürgen ; Willert, Prof. Dr. Volker ; Fernández, Prof. Dr. Gerardo
Date: 2021
Place of Publication: Darmstadt
Collation: XV, 152 Seiten
Refereed: 1 February 2021
DOI: 10.26083/tuprints-00017650
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17650
Abstract:

This dissertation introduces new techniques that increase the accuracy of camera-based pose estimation using fiducial markers. The problem of camera-based pose estimation involves finding a camera's pose relative to some coordinate system by detecting some known features in the environment; when the visual appearance of these features is known beforehand, they are called fiducials.

The visual-based pose estimation process is highly complex since the estimated pose accuracy depends on many interconnected factors that have to be considered simultaneously; this thesis aims to identify the most influential factors and proposes solutions that mitigate the effect of the sources of error, hence increasing the estimated pose's accuracy and robustness. We base our solutions on exploiting an interaction between the camera and what the camera is measuring; this, in essence, means that the features change and adapt to better suit the measurement by either moving in space to better locations or changing their shape dynamically.

Alternative Abstract:
Alternative abstract Language

In dieser Dissertation werden neue Techniken vorgestellt, die die Genauigkeit der kamerabasierten Posenschätzung mit Hilfe von visuellen Referenzmarken erhöht. Das Problem der kamerabasierten Posenschätzung besteht darin, die Pose einer Kamera relativ zu einem Koordinatensystem zu bestimmen, indem einige bekannte Merkmale in der Umgebung erkannt werden. Wenn die visuelle Erscheinung dieser Merkmale im Voraus bekannt ist, werden diese als Referenzpunkte bezeichnet.

Der visuell-basierte Prozess der Posenschätzung ist sehr komplex, da die Genauigkeit der geschätzten Pose von vielen miteinander verbundenen Faktoren abhängt, die gleichzeitig berücksichtigt werden müssen. Diese Arbeit zielt darauf ab, die einflussreichsten Faktoren zu identifizieren und schlägt Lösungen vor, die die Auswirkungen der Fehlerquellen mildern und somit die Genauigkeit und Robustheit der geschätzten Pose erhöhen. Die in dieser Arbeit vorgestellte Lösung basiert auf der Ausnutzung einer Interaktion zwischen der Kamera und dem, was die Kamera erfasst. Dies bedeutet im Wesentlichen, dass sich die Merkmale ändern und anpassen, um der Erfassung besser zu entsprechen, indem sie sich entweder im Raum an bessere Orte bewegen oder ihre Form dynamisch verändern.

German
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-176507
Classification DDC: 000 Generalities, computers, information > 000 Generalities
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik
18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik > Control Methods and Robotics (from 01.08.2022 renamed Control Methods and Intelligent Systems)
Date Deposited: 29 Oct 2021 12:12
Last Modified: 01 Nov 2021 07:43
PPN:
Referees: Adamy, Prof. Dr. Jürgen ; Willert, Prof. Dr. Volker ; Fernández, Prof. Dr. Gerardo
Refereed / Verteidigung / mdl. Prüfung: 1 February 2021
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details