TU Darmstadt / ULB / TUbiblio

Room-temperature dislocation plasticity in SrTiO3 tuned by defect chemistry

Stich, Stephan ; Ding, Kuan ; Muhammad, Qaisar Khushi ; Porz, Lukas ; Minnert, Christian ; Rheinheimer, Wolfgang ; Durst, Karsten ; Rödel, Jürgen ; Frömling, Till ; Fang, Xufei (2021)
Room-temperature dislocation plasticity in SrTiO3 tuned by defect chemistry.
In: Journal of the American Ceramic Society
doi: 10.1111/jace.18118
Article, Bibliographie

This is the latest version of this item.

Abstract

Dislocations have been identified to modify both the functional and mechanical properties of some ceramic materials. Succinct control of dislocation-based plasticity in ceramics will also demand knowledge about dislocation interaction with point defects. Here, we propose an experimental approach to modulate the dislocation-based plasticity in single-crystal SrTiO3 based on the concept of defect chemistry engineering, for example, by increasing the oxygen vacancy concentration via reduction treatment. With nanoindentation and bulk compression tests, we find that the dislocation-governed plasticity is significantly modified at the nano-/microscale, compared to the bulk scale. The increase in oxygen vacancy concentration after reduction treatment was assessed by impedance spectroscopy and is found to favor dislocation nucleation but impede dislocation motion as rationalized by the nanoindentation pop-in and nanoindentation creep tests.

Item Type: Article
Erschienen: 2021
Creators: Stich, Stephan ; Ding, Kuan ; Muhammad, Qaisar Khushi ; Porz, Lukas ; Minnert, Christian ; Rheinheimer, Wolfgang ; Durst, Karsten ; Rödel, Jürgen ; Frömling, Till ; Fang, Xufei
Type of entry: Bibliographie
Title: Room-temperature dislocation plasticity in SrTiO3 tuned by defect chemistry
Language: English
Date: 13 September 2021
Publisher: Wiley
Journal or Publication Title: Journal of the American Ceramic Society
DOI: 10.1111/jace.18118
Corresponding Links:
Abstract:

Dislocations have been identified to modify both the functional and mechanical properties of some ceramic materials. Succinct control of dislocation-based plasticity in ceramics will also demand knowledge about dislocation interaction with point defects. Here, we propose an experimental approach to modulate the dislocation-based plasticity in single-crystal SrTiO3 based on the concept of defect chemistry engineering, for example, by increasing the oxygen vacancy concentration via reduction treatment. With nanoindentation and bulk compression tests, we find that the dislocation-governed plasticity is significantly modified at the nano-/microscale, compared to the bulk scale. The increase in oxygen vacancy concentration after reduction treatment was assessed by impedance spectroscopy and is found to favor dislocation nucleation but impede dislocation motion as rationalized by the nanoindentation pop-in and nanoindentation creep tests.

Divisions: 11 Department of Materials and Earth Sciences
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials
Date Deposited: 11 Oct 2021 05:44
Last Modified: 03 Jul 2024 02:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details