TU Darmstadt / ULB / TUbiblio

Static and Dynamic Analysis of a Simple Model of Explicit Gradient Elasticity

Sideris, Stergios - Alexandros (2021)
Static and Dynamic Analysis of a Simple Model of Explicit Gradient Elasticity.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00019203
Ph.D. Thesis, Primary publication, Publisher's Version

Abstract

Gradient elasticity has developed into an important area of continuum mechanics with numerous applications in engineering mechanics, structural analysis, experimental and computational mechanics. The present thesis is concerned with a simple model of explicit gradient elasticity. The aim is to provide a comprehensive insight into the basic properties of this model, by solving several problems in statics and dynamics. The problems include one - dimensional and two - dimensional (bending) loading conditions. Especially, use is made of a consistent Euler - Bernoulli beam theory and of different versions of Hamilton's principle. Moreover, a method is presented for determining the critical load in buckling problems. The investigations highlight, among others, the effect of non - classical boundary conditions and of non - classical material parameters.

Item Type: Ph.D. Thesis
Erschienen: 2021
Creators: Sideris, Stergios - Alexandros
Type of entry: Primary publication
Title: Static and Dynamic Analysis of a Simple Model of Explicit Gradient Elasticity
Language: English
Referees: Tsakmakis, Prof. Dr. Charalampos ; Sadiki, Prof. Dr. Amsini
Date: 2021
Place of Publication: Darmstadt
Collation: v, 105 Seiten
Refereed: 1 July 2021
DOI: 10.26083/tuprints-00019203
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19203
Abstract:

Gradient elasticity has developed into an important area of continuum mechanics with numerous applications in engineering mechanics, structural analysis, experimental and computational mechanics. The present thesis is concerned with a simple model of explicit gradient elasticity. The aim is to provide a comprehensive insight into the basic properties of this model, by solving several problems in statics and dynamics. The problems include one - dimensional and two - dimensional (bending) loading conditions. Especially, use is made of a consistent Euler - Bernoulli beam theory and of different versions of Hamilton's principle. Moreover, a method is presented for determining the critical load in buckling problems. The investigations highlight, among others, the effect of non - classical boundary conditions and of non - classical material parameters.

Alternative Abstract:
Alternative abstract Language

Gradientenelastizität ist ein wichtiger Bereich der modernen Kontinuumsmechanik geworden, mit zahlreichen Anwendungen in Ingenieurwissenschaften in Werkstoffmechanik, experimenteller - und numerischer Mechanik. Die vorliegende Dissertation befasst sich mit einem einfachen Modell der expliziten Gradientenelastizität. Das Ziel ist eine umfassende Untersuchung der Eigenschaften dieses Models. Dazu werden statische und dynamische Probleme mit eindimensionalen und zweidimensionalen (Biege -) Belastungen gelöst. Insbesondere werden eine konsistente Euler - Bernoulli Biegetheorie und verschiedene Versionen des Prinzips von Hamilton benutzt. Ferner wird eine Methode zur Ermittlung der kritischen Last bei Knickung vorgestellt. Die Untersuchungen beleuchten unter Anderem den Einfluss von Randbedingungen und Materialparametern.

German
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-192038
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 13 Department of Civil and Environmental Engineering Sciences
13 Department of Civil and Environmental Engineering Sciences > Mechanics
13 Department of Civil and Environmental Engineering Sciences > Mechanics > Continuum Mechanics
Date Deposited: 26 Jul 2021 08:51
Last Modified: 03 Aug 2021 06:01
PPN:
Referees: Tsakmakis, Prof. Dr. Charalampos ; Sadiki, Prof. Dr. Amsini
Refereed / Verteidigung / mdl. Prüfung: 1 July 2021
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details