Kar, Sounak ; Rehrmann, Robin ; Mukhopadhyay, Arpan ; Alt, Bastian ; Ciucu, Florin ; Koeppl, Heinz ; Binnig, Carsten ; Rizk, Amr (2020)
On the Throughput Optimization in Large-Scale Batch-Processing Systems.
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERF 2020). virtual Conference (02.-06.11.2020)
Conference or Workshop Item
Abstract
We analyze a data-processing system with $n$ clients producing jobs which are processed in \textit{batches} by $m$ parallel servers; the system throughput critically depends on the batch size and a corresponding sub-additive speedup function. In practice, throughput optimization relies on numerical searches for the optimal batch size, a process that can take up to multiple days in existing commercial systems. In this paper, we model the system in terms of a closed queueing network; a standard Markovian analysis yields the optimal throughput in $\omega\left(n^4\right)$ time. Our main contribution is a mean-field model of the system for the regime where the system size is large. We show that the mean-field model has a unique, globally attractive stationary point which can be found in closed form and which characterizes the asymptotic throughput of the system as a function of the batch size. Using this expression we find the \textit{asymptotically} optimal throughput in $O(1)$ time. Numerical settings from a large commercial system reveal that this asymptotic optimum is accurate in practical finite regimes.
Item Type: |
Conference or Workshop Item
|
Erschienen: |
2020 |
Creators: |
Kar, Sounak ; Rehrmann, Robin ; Mukhopadhyay, Arpan ; Alt, Bastian ; Ciucu, Florin ; Koeppl, Heinz ; Binnig, Carsten ; Rizk, Amr |
Type of entry: |
Bibliographie |
Title: |
On the Throughput Optimization in Large-Scale Batch-Processing Systems |
Language: |
English |
Date: |
2 November 2020 |
Event Title: |
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERF 2020) |
Event Location: |
virtual Conference |
Event Dates: |
02.-06.11.2020 |
URL / URN: |
https://www.performance2020.deib.polimi.it/private-program/ |
Corresponding Links: |
|
Abstract: |
We analyze a data-processing system with $n$ clients producing jobs which are processed in \textit{batches} by $m$ parallel servers; the system throughput critically depends on the batch size and a corresponding sub-additive speedup function. In practice, throughput optimization relies on numerical searches for the optimal batch size, a process that can take up to multiple days in existing commercial systems. In this paper, we model the system in terms of a closed queueing network; a standard Markovian analysis yields the optimal throughput in $\omega\left(n^4\right)$ time. Our main contribution is a mean-field model of the system for the regime where the system size is large. We show that the mean-field model has a unique, globally attractive stationary point which can be found in closed form and which characterizes the asymptotic throughput of the system as a function of the batch size. Using this expression we find the \textit{asymptotically} optimal throughput in $O(1)$ time. Numerical settings from a large commercial system reveal that this asymptotic optimum is accurate in practical finite regimes. |
Uncontrolled Keywords: |
B4 |
Divisions: |
18 Department of Electrical Engineering and Information Technology 18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications > Bioinspired Communication Systems 18 Department of Electrical Engineering and Information Technology > Institute of Computer Engineering 18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications 18 Department of Electrical Engineering and Information Technology > Institute of Computer Engineering > Multimedia Communications DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > B: Adaptation Mechanisms > Subproject B4: Planning DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1053: MAKI – Multi-Mechanisms Adaptation for the Future Internet > C: Communication Mechanisms > Subproject C2: Information-centred perspective |
Date Deposited: |
26 Oct 2020 11:13 |
Last Modified: |
19 Nov 2021 10:46 |
PPN: |
|
Corresponding Links: |
|
Export: |
|
Suche nach Titel in: |
TUfind oder in Google |
 |
Send an inquiry |
Options (only for editors)
 |
Show editorial Details |