TU Darmstadt / ULB / TUbiblio

Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models

Kreß, Klaus (2020)
Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00013505
Ph.D. Thesis, Primary publication

Abstract

The main objective of this thesis is the investigation of different models arising from mathematical biology and fluid mechanics in the time-periodic setting. We consider the classical Keller-Segel model for chemotaxis as well as its coupling to a fluid whose motion is described by the Navier-Stokes equations. The second model we investigate is the bidomain system which describes the propagation of electrophysiological waves in the heart. The last model considered is the Beris-Edwards model of nematic liquid crystals.

Item Type: Ph.D. Thesis
Erschienen: 2020
Creators: Kreß, Klaus
Type of entry: Primary publication
Title: Time-Periodic Solutions to Bidomain, Chemotaxis-Fluid, and Q-Tensor Models
Language: English
Referees: Hieber, Prof. Dr. Matthias ; Farwig, Prof. Dr. Reinhard
Date: 2020
Place of Publication: Darmstadt
Refereed: 13 July 2020
DOI: 10.25534/tuprints-00013505
URL / URN: https://tuprints.ulb.tu-darmstadt.de/13505
Abstract:

The main objective of this thesis is the investigation of different models arising from mathematical biology and fluid mechanics in the time-periodic setting. We consider the classical Keller-Segel model for chemotaxis as well as its coupling to a fluid whose motion is described by the Navier-Stokes equations. The second model we investigate is the bidomain system which describes the propagation of electrophysiological waves in the heart. The last model considered is the Beris-Edwards model of nematic liquid crystals.

Alternative Abstract:
Alternative abstract Language

Das Hauptanliegen dieser Dissertation ist die Erforschung von verschiedenen Modellen, welche ihren Ursprung in der mathematischen Biologie und Fluidmechanik haben, im zeitperiodischen Setting. Wir untersuchen sowohl das klassische Keller-Segel Modell für Chemotaxis als auch dessen Kopplung zu den Navier-Stokes Gleichungen, welche die Strömung von viskosen Fluiden beschreiben. Das zweite betrachtete Modell, das Bidomain System, beschreibt die Ausbreitung von elektrophysiologischen Wellen im Herzen. Als letztes Modell untersuchen wir das Beris-Edwards Modell für nematische Flüssigkristalle.

German
URN: urn:nbn:de:tuda-tuprints-135050
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics
04 Department of Mathematics > Analysis
04 Department of Mathematics > Analysis > Angewandte Analysis
04 Department of Mathematics > Analysis > Partial Differential Equations and Applications
Date Deposited: 30 Sep 2020 11:26
Last Modified: 06 Oct 2020 07:03
PPN:
Referees: Hieber, Prof. Dr. Matthias ; Farwig, Prof. Dr. Reinhard
Refereed / Verteidigung / mdl. Prüfung: 13 July 2020
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details