TU Darmstadt / ULB / TUbiblio

Mathematical Analysis and Simulation of Field Models in Accelerator Circuits

Cortes Garcia, Idoia (2020)
Mathematical Analysis and Simulation of Field Models in Accelerator Circuits.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00011750
Ph.D. Thesis, Primary publication

Abstract

Typically in electrical engineering a network modelling approach for the simulation of devices and their surrounding circuitry is taken, where each device is considered by a voltage-to-current relation. For some applications, however, this simplification does not yield the required accuracy. In these cases, refined modelling can be performed, where a spatially distributed partial differential equation modelling the required physical quantity is coupled to the classic network equations. The resulting coupled system of equations often exhibits a multiscale, multirate and even multiphysical behaviour that is tackled with involved algorithms so as to efficiently simulate it. Its structural analysis is therefore important, to numerically treat the system appropriately and to ensure that the algorithms converge properly. This thesis deals with the mathematical analysis of these type of systems as well as their simulation.

The systems of equations obtained from circuits with semidiscrete refined models are typically differential algebraic equations. Their numerical and analytical difficulties is studied in the context of their differential algebraic index. For that, three generalised circuit element definitions are given, that allow the classification of the refined models. Hereby, the index of the entire coupled system can be specified by means of topological properties of the circuit. Several approximations to Maxwell’s equations are classified with the generalised element definitions to obtain the index properties of the field-circuit coupled systems.

For the simulation two algorithms are studied. First the co-simulation waveform relaxation method is analysed for field-circuit coupled systems arising from magnetoquasistatic fields with eddy current effects on superconducting coils. The convergence of the algorithm is sped up by means of optimised Schwarz methodologies. Here, the information exchange between both subsystems is improved by a linear combination of the coupling conditions. To further speed up simulation time, the parallel-in-time method Parareal is analysed. The algorithm is investigated in the context of differential algebraic equations by studying its applicability to nonlinear higher index systems arising e.g. from circuit simulation. Finally, two approaches are proposed for the combination of Parareal and waveform relaxation. One of them is specifically designed for field-circuit coupled systems and yields a micro-macro-like Parareal algorithm. However, the idea behind it can be applied to other type of coupled systems.

Numerical tests of field-circuit coupled systems are made to underline the results obtained from the mathematical theory as well as test the efficiency of the proposed algorithms.

Item Type: Ph.D. Thesis
Erschienen: 2020
Creators: Cortes Garcia, Idoia
Type of entry: Primary publication
Title: Mathematical Analysis and Simulation of Field Models in Accelerator Circuits
Language: English
Referees: Schöps, Prof. Dr. Sebastian ; Tischendorf, Prof. Dr. Caren
Date: 2020
Place of Publication: Darmstadt
Refereed: 28 April 2020
DOI: 10.25534/tuprints-00011750
URL / URN: https://tuprints.ulb.tu-darmstadt.de/11750
Abstract:

Typically in electrical engineering a network modelling approach for the simulation of devices and their surrounding circuitry is taken, where each device is considered by a voltage-to-current relation. For some applications, however, this simplification does not yield the required accuracy. In these cases, refined modelling can be performed, where a spatially distributed partial differential equation modelling the required physical quantity is coupled to the classic network equations. The resulting coupled system of equations often exhibits a multiscale, multirate and even multiphysical behaviour that is tackled with involved algorithms so as to efficiently simulate it. Its structural analysis is therefore important, to numerically treat the system appropriately and to ensure that the algorithms converge properly. This thesis deals with the mathematical analysis of these type of systems as well as their simulation.

The systems of equations obtained from circuits with semidiscrete refined models are typically differential algebraic equations. Their numerical and analytical difficulties is studied in the context of their differential algebraic index. For that, three generalised circuit element definitions are given, that allow the classification of the refined models. Hereby, the index of the entire coupled system can be specified by means of topological properties of the circuit. Several approximations to Maxwell’s equations are classified with the generalised element definitions to obtain the index properties of the field-circuit coupled systems.

For the simulation two algorithms are studied. First the co-simulation waveform relaxation method is analysed for field-circuit coupled systems arising from magnetoquasistatic fields with eddy current effects on superconducting coils. The convergence of the algorithm is sped up by means of optimised Schwarz methodologies. Here, the information exchange between both subsystems is improved by a linear combination of the coupling conditions. To further speed up simulation time, the parallel-in-time method Parareal is analysed. The algorithm is investigated in the context of differential algebraic equations by studying its applicability to nonlinear higher index systems arising e.g. from circuit simulation. Finally, two approaches are proposed for the combination of Parareal and waveform relaxation. One of them is specifically designed for field-circuit coupled systems and yields a micro-macro-like Parareal algorithm. However, the idea behind it can be applied to other type of coupled systems.

Numerical tests of field-circuit coupled systems are made to underline the results obtained from the mathematical theory as well as test the efficiency of the proposed algorithms.

Alternative Abstract:
Alternative abstract Language

Bei der Simulation des physikalischen Verhaltens von Bauelementen und der sie umgebenden Schaltungstechnik wird üblicherweise ein Netzwerkmodellierungsansatz gewählt, bei dem die Geräte durch Spannungs-Strom-Beziehungen beschrieben werden. Für einige Anwendungen liefert diese Vereinfachung jedoch nicht die erforderliche Genauigkeit. In diesen Fällen kann eine verfeinerte Modellierung durchgeführt werden, bei der eine räumlich-verteilte partielle Differentialgleichung die erforderlichen physikalischen Größen modelliert und an die klassischen Schaltungsgleichungen gekoppelt wird. Das resultierende Gleichungssystem weist oft ein multiskalen, multiraten und sogar multiphysikalisches Verhalten auf. Um dies effizient zu simulieren, werden involvierte Algorithmen verwendet. Daher ist die Strukturanalyse des Systems fundamental, um es numerisch korrekt zu behandeln und sicherzustellen, dass die Algorithmen wie erwartet konvergieren. Diese Arbeit befasst sich mit der mathematischen Analyse dieser Systeme, sowie deren Simulation.

Typischerweise sind die Gleichungssysteme, die aus Schaltungen mit semidiskreten verfeinerten Modellen entstehen, differential-algebraische Gleichungen. Die potentiellen numerischen und analytischen Schwierigkeiten, die bei ihnen auftreten, können im Kontext ihres Index’ untersucht werden. In diesem Rahmen werden drei verallgemeinerte Schaltungselemente definiert, die eine Klassifizierung der verfeinerten Modelle ermöglichen. Somit kann der Index des gesamten gekoppelten Systems ausschließlich durch topologische Eigenschaften des Netwerks ermittelt werden. Verschiedene Näherungen der Maxwell-Gleichungen werden durch die verallgemeinerten Elementdefinitionen klassifiziert, um somit die Index-Eigenschaften des gekoppelten Systems zu bestimmen.

Zwei Algorithmen werden für die Simulationen untersucht. Das Waveform-Relaxationsverfahren wird zunächst für die Kosimulation von Feld un Netzwerk analysiert, die aus magnetoquasistatischen Feldern mit Wirbelstromeffekten auf supraleitenden Spulen entstehen. Die Konvergenz des Waveform-Relaxationsverfahrens wird mittels Optimised-Schwarz-Methoden beschleunigt. Hiermit wird der Informationsaustausch zwischen beiden Subsystemen verbessert. Für die weitere Beschleunigung der Simulationszeit, wird das zeitparallele Verfahren Parareal analysiert. Hierfür wird zuerst der Algorithmus im Kontext der Differential-algebraischen Gleichungen untersucht, wobei seine Anwendbarkeit auf nichtlineare Systeme höheren Index, die z.B. aus den Schaltungsgleichungen entstehen, ermittelt wird. Anschließend werden zwei Ansätze für die Kombination von Parareal und Waveform-Relaxation untersucht. Einer der Ansätze ist speziell für Feld-Netzwerk gekoppelte Systeme entworfen und ergibt einen mikro-makro-ähnlichen Parareal-Algorithmus. Der Ansatz kann jedoch auch auf andere Arten gekoppelter Systeme angewendet werden.

Zuletzt werden numerische Tests an Feld-Netzwerk gekoppelten Systemen durchgeführt, um die theoretischen Resultate sowie die Effizienz der vorgeschlagenen Algorithmen nachzuprüfen.

German
URN: urn:nbn:de:tuda-tuprints-117508
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute for Accelerator Science and Electromagnetic Fields > Computational Electromagnetics
18 Department of Electrical Engineering and Information Technology > Institute for Accelerator Science and Electromagnetic Fields
Exzellenzinitiative
Exzellenzinitiative > Graduate Schools
Exzellenzinitiative > Graduate Schools > Graduate School of Computational Engineering (CE)
Date Deposited: 02 Jun 2020 12:07
Last Modified: 09 Jun 2020 06:18
PPN:
Referees: Schöps, Prof. Dr. Sebastian ; Tischendorf, Prof. Dr. Caren
Refereed / Verteidigung / mdl. Prüfung: 28 April 2020
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details