TU Darmstadt / ULB / TUbiblio

Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates

Kumar, Abhijeet ; Kleinen, Jochen ; Venzmer, Joachim ; Trybała, Anna ; Starov, Victor ; Gambaryan-Roisman, Tatiana (2019)
Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates.
In: Colloids and Interfaces, 3 (3)
doi: 10.3390/colloids3030053
Article, Bibliographie

This is the latest version of this item.

Abstract

Vesicles have recently found widespread use in applications such as conditioning of textiles, paper and hair, as well as transdermal drug delivery. The mode of treatment in several such cases involves the application of droplets of aqueous dispersions of vesicles onto dry porous substrates like paper and textiles. One of the factors which affects the performance of such treatments is the rate at which the droplets spread and imbibe on the porous substrate. Depending upon the specific purpose of the treatment either a fast or slow droplet spreading kinetics could be desired. Therefore, it is important to have a good understanding of the droplet spreading process and the factors which influence it. In this work, an experimental investigation of the simultaneous spreading and imbibition of vesicle dispersion droplets on cellulose filter papers is carried out. Two different types of vesicles which are composed of similar lipid molecules but exhibit contrasting lipid bilayer phase behavior are used. Two different grades of filter papers with comparable porosities but different thicknesses are used as porous substrate. It is found that the droplet spreading behavior is of the “complete wetting” type on the thicker porous substrate, whereas it is of the “partial wetting” type on the thinner substrate. Furthermore, it is observed that the spreading of droplets containing vesicles with liquid-crystalline phase bilayers occurs faster than that of vesicles with solid-gel phase bilayers. The secondary radial penetration which commences after the initial droplet spreading is complete is also investigated and discussed.

Item Type: Article
Erschienen: 2019
Creators: Kumar, Abhijeet ; Kleinen, Jochen ; Venzmer, Joachim ; Trybała, Anna ; Starov, Victor ; Gambaryan-Roisman, Tatiana
Type of entry: Bibliographie
Title: Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates
Language: English
Date: 21 July 2019
Place of Publication: Basel
Publisher: MDPI
Journal or Publication Title: Colloids and Interfaces
Volume of the journal: 3
Issue Number: 3
Collation: 12 Seiten
DOI: 10.3390/colloids3030053
Corresponding Links:
Abstract:

Vesicles have recently found widespread use in applications such as conditioning of textiles, paper and hair, as well as transdermal drug delivery. The mode of treatment in several such cases involves the application of droplets of aqueous dispersions of vesicles onto dry porous substrates like paper and textiles. One of the factors which affects the performance of such treatments is the rate at which the droplets spread and imbibe on the porous substrate. Depending upon the specific purpose of the treatment either a fast or slow droplet spreading kinetics could be desired. Therefore, it is important to have a good understanding of the droplet spreading process and the factors which influence it. In this work, an experimental investigation of the simultaneous spreading and imbibition of vesicle dispersion droplets on cellulose filter papers is carried out. Two different types of vesicles which are composed of similar lipid molecules but exhibit contrasting lipid bilayer phase behavior are used. Two different grades of filter papers with comparable porosities but different thicknesses are used as porous substrate. It is found that the droplet spreading behavior is of the “complete wetting” type on the thicker porous substrate, whereas it is of the “partial wetting” type on the thinner substrate. Furthermore, it is observed that the spreading of droplets containing vesicles with liquid-crystalline phase bilayers occurs faster than that of vesicles with solid-gel phase bilayers. The secondary radial penetration which commences after the initial droplet spreading is complete is also investigated and discussed.

Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Institute for Technical Thermodynamics (TTD)
DFG-Collaborative Research Centres (incl. Transregio)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1194: Interaction between Transport and Wetting Processes
Date Deposited: 03 Sep 2019 05:56
Last Modified: 04 Dec 2023 13:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details