TU Darmstadt / ULB / TUbiblio

Evaluation of uncertainty in the vibration attenuation with shunted piezoelectric transducers integrated in a beam-column support

Götz, Benedict (2019)
Evaluation of uncertainty in the vibration attenuation with shunted piezoelectric transducers integrated in a beam-column support.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

Vibrations in mechanical lightweight beam and truss-type structures are often related to several detrimental effects such as diminished durability, unwanted noise and safety issues. By integration of two piezoelectric transducers connected to RLand RLC-shunts into a beam-column support with rotational elasticity as presented in this work, vibrations of a beam-column with circular cross-section is significantly attenuated in various lateral directions. In contrast to other measures for vibration attenuation, the advantages of the piezoelectric transducer with shunt circuit are the possibility of integrating the transducer into the structure’s mechanical load path and the precise vibration attenuation adjustment. In this work, on the one hand, the capability of the proposed piezo-elastic support to attenuate lateral beam-column vibrations with shunted transducers is investigated experimentally and numerically. On the other hand, uncertainty in the vibration attenuation is quantified and evaluated by experiments and simulation to reduce uncertainty in the application of the piezo-elastic support. It is shown numerically and experimentally that the proposed concept of the piezoelastic support attenuates beam-column vibrations in various lateral directions by 89% with RL-shunts and by 96% with RLC-shunts compared to vibrations without attenuation through shunts. However, uncertainty caused by manufacturing, assembly and static axial beam-column load variations affects the lateral beamcolumn vibration attenuation during operation. As an approach for uncertainty quantification, a model-based uncertainty analysis with parameter uncertainty assumed from own experiments and literature is performed. Own experiments are performed to quantify uncertainty due to spring element manufacturing variations, a key element of the piezo-elastic support, and due to static beam-column load variations. It is shown that both sources significantly affect the vibration attenuation with RL- and RLC-shunts. So far, uncertainty due to static beam-column load variations has not been subject of research for resonant shunted transducers. Numerical results of the model-based uncertainty analysis with uncertainty assumed from own experiments and literature combined show that vibration attenuation with RL- and RLC-shunts is significantly affected by all three sources of uncertainty but still adequate vibration attenuation is achieved. More specifically, vibration attenuation with RLC-shunts is only little affected by static load variations. The novelty of this work is the use of resonant shunted piezoelectric transducers integrated in a beam-column support for vibration attenuation. Furthermore, the evaluation of uncertainty by probabilistic measures of the maximum vibration amplitude of the uncertain vibration behavior is new.

Item Type: Ph.D. Thesis
Erschienen: 2019
Creators: Götz, Benedict
Type of entry: Primary publication
Title: Evaluation of uncertainty in the vibration attenuation with shunted piezoelectric transducers integrated in a beam-column support
Language: English
Referees: Melz, Prof. Dr. Tobias ; Groche, Prof. Dr. Peter
Date: 2019
Place of Publication: Darmstadt
Refereed: 28 November 2018
URL / URN: https://tuprints.ulb.tu-darmstadt.de/8608
Abstract:

Vibrations in mechanical lightweight beam and truss-type structures are often related to several detrimental effects such as diminished durability, unwanted noise and safety issues. By integration of two piezoelectric transducers connected to RLand RLC-shunts into a beam-column support with rotational elasticity as presented in this work, vibrations of a beam-column with circular cross-section is significantly attenuated in various lateral directions. In contrast to other measures for vibration attenuation, the advantages of the piezoelectric transducer with shunt circuit are the possibility of integrating the transducer into the structure’s mechanical load path and the precise vibration attenuation adjustment. In this work, on the one hand, the capability of the proposed piezo-elastic support to attenuate lateral beam-column vibrations with shunted transducers is investigated experimentally and numerically. On the other hand, uncertainty in the vibration attenuation is quantified and evaluated by experiments and simulation to reduce uncertainty in the application of the piezo-elastic support. It is shown numerically and experimentally that the proposed concept of the piezoelastic support attenuates beam-column vibrations in various lateral directions by 89% with RL-shunts and by 96% with RLC-shunts compared to vibrations without attenuation through shunts. However, uncertainty caused by manufacturing, assembly and static axial beam-column load variations affects the lateral beamcolumn vibration attenuation during operation. As an approach for uncertainty quantification, a model-based uncertainty analysis with parameter uncertainty assumed from own experiments and literature is performed. Own experiments are performed to quantify uncertainty due to spring element manufacturing variations, a key element of the piezo-elastic support, and due to static beam-column load variations. It is shown that both sources significantly affect the vibration attenuation with RL- and RLC-shunts. So far, uncertainty due to static beam-column load variations has not been subject of research for resonant shunted transducers. Numerical results of the model-based uncertainty analysis with uncertainty assumed from own experiments and literature combined show that vibration attenuation with RL- and RLC-shunts is significantly affected by all three sources of uncertainty but still adequate vibration attenuation is achieved. More specifically, vibration attenuation with RLC-shunts is only little affected by static load variations. The novelty of this work is the use of resonant shunted piezoelectric transducers integrated in a beam-column support for vibration attenuation. Furthermore, the evaluation of uncertainty by probabilistic measures of the maximum vibration amplitude of the uncertain vibration behavior is new.

Alternative Abstract:
Alternative abstract Language

Schwingungen in mechanischen Leichtbaustrukturen, wie sie z. B. in Balken und Tragwerken auftreten, führen oft zu nachteiligen Effekten wie verringerter Haltbarkeit, unerwünschtem Lärm oder Sicherheitsproblemen. Durch die Integration von zwei mit RL- und RLC-Shunts verbundenen piezoelektrischen Wandlern in die Lagerung eines Balkens mit Kreisquerschnitt, können Balkenschwingungen in beliebige laterale Richtungen deutlich gemindert werden. Ein zentrales Element dieser piezo-elastischen Lagerung ist ein rotationselastisches Federelement, das es ermöglicht, laterale Balkenauslenkungen in axiale Piezoverformungen umzuwandeln. Piezoelektrische Wandler, die mit Shunts verbunden sind, besitzen den Vorteil, dass sie in den mechanischen Lastpfad einer Struktur integriert werden können und dass die Schwingungsminderung mit Hilfe des Shunts präzise auf das Schwingungsverhalten der Struktur abgestimmt werden kann.

In dieser Arbeit wird einerseits die Fähigkeit der vorgeschlagenen piezo-elastischen Balkenlagerung zur Minderung von lateralen Balkenschwingungen experimentell und numerisch untersucht. Andererseits wird die Unsicherheit in der Schwingungsminderung durch Experimente und Simulationen quantifiziert und bewertet, um die Unsicherheit bei der Anwendung des Lagers zu reduzieren.

Anhand experimenteller und numerischer Ergebnisse wird gezeigt, dass das vorgeschlagene piezo-elastische Lager Balkenschwingungen in beliebige laterale Richtungen um 89% mit RL-Shunt und um 96% mit RLC-Shunt, im Vergleich zu Balkenschwingungen ohne Shunts, mindert.

Unsicherheit durch Herstellungsschwankungen, Montageschwankungen und durch statische Balkenbelastung beeinflusst die Schwingungsminderung der Wandler mit Shunts in der Balkenlagerung. Zur Quantifizierung der Unsicherheit in der Schwingungsminderung wird eine modellbasierte Unsicherheitsanalyse mit Parameterunsicherheit, die aus eigenen Experimenten und der Literatur abgeschätzt wird, durchgeführt. Dabei wird Unsicherheit in der Herstellung des Federelements und Unsicherheit aus der statischen Belastung in eigenen Experimenten quantifiziert. Die experimentellen Untersuchungen zeigen, dass beide Quellen die Schwingungsminderung mit RL- und RLC-Shunts signifikant beeinflussen. Bisher wurde die Unsicherheit in der Schwingungsminderung mit RL- und RLC-Shunt aufgrund von statischen Belastungen noch nicht in der Literatur untersucht.

Numerische Ergebnisse der modellbasierten Unsicherheitsanalyse mit Unsicherheit aus eigenen Experimenten und Literatur zeigen, dass die Schwingungsminderung mit RL- und RLC-Shunts signifikant von allen drei Quellen der Unsicherheit beeinflusst wird. Trotzdem wird immer noch eine ausreichende Schwingungsminderung erreicht. Insbesondere wird die Schwingungsminderung mit RLC-Shunts durch statische Lastschwankungen nur wenig beeinflusst.

Die Neuheit dieser Arbeit ist die Integration von piezoelektrischen Wandlern mit Shunts in einem Balkenlager zur Schwingungsminderung von lateralen Balkenschwingungen. Darüber hinaus ist die Bewertung der Unsicherheit durch probabilistische Größen der maximalen Schwingungsamplitude des unsicheren Schwingungsverhaltens neu.

German
URN: urn:nbn:de:tuda-tuprints-86082
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 16 Department of Mechanical Engineering
16 Department of Mechanical Engineering > Research group System Reliability, Adaptive Structures, and Machine Acoustics (SAM)
16 Department of Mechanical Engineering > Research group System Reliability, Adaptive Structures, and Machine Acoustics (SAM) > Development, modelling, evaluation, and use of smart structure components and systems
16 Department of Mechanical Engineering > Research group System Reliability, Adaptive Structures, and Machine Acoustics (SAM) > Characterization, evaluation, and control of the reliability of mechanical systems
DFG-Collaborative Research Centres (incl. Transregio)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 805: Control of Uncertainty in Load-Carrying Structures in Mechanical Engineering
Date Deposited: 14 Apr 2019 19:55
Last Modified: 14 Apr 2019 19:55
PPN:
Referees: Melz, Prof. Dr. Tobias ; Groche, Prof. Dr. Peter
Refereed / Verteidigung / mdl. Prüfung: 28 November 2018
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details