TU Darmstadt / ULB / TUbiblio

Generation, Handling and Transport of Laser-Driven Heavy Ion Beams

Ding, Johannes (2018)
Generation, Handling and Transport of Laser-Driven Heavy Ion Beams.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

The thesis at hand addresses the generation, handling and transport of laser-driven heavy ion beams. The presented research has been conducted within the laser and plasma physics group at the institute of nuclear physics of the Technical University of Darmstadt. The experimental campaigns contributing to the results in this thesis have been carried out at the GSI Helmholtz Center for Heavy Ion Research and were supported by their plasma physics department.

The laser-driven ion acceleration scheme target normal sheath acceleration (TNSA) enables the compact generation of intense ion bunches with kinetic energies in the range of 10s of MeV. The laser-accelerated ion beams have unique properties, such as extremely small transverse and longitudinal emittance, high numbers of ions per bunch, but also broad exponentially decaying energy spectra and high divergence. Due to the nature of the acceleration process the composition of ion species in the beam is defined by the atom population in the source area and is generally dominated by protons stemming from ever present hydro-carbon contaminations. Many anticipated applications of laser-driven ion beams rely on the efficient acceleration of heavy ions and on controlling the energy spread and the divergence of the initial TNSA beam.

In this work the efficient acceleration of carbon and fluorine ion beams by means of TNSA was demonstrated. The hydrocarbon contaminations on the surface of the coated targets were removed by means of Joule heating. Utilizing this method and the 100 TW beamline of the PHELIX laser system at GSI, kinetic energies of fourfold positively charged carbon ions C4+ of up to 68.5 MeV and of sevenfold positively charged fluorine ions F7+ of up to 180 MeV were observed.

With the help of a pulsed high-field solenoid magnet from Helmholtz Center Dresden-Rossen- dorf incorporated into the prototype beamline of the LIGHT (Laser Ion Generation, Handling and Transport) collaboration, the efficient collimation and transport as well as the energy selection by means of chromatic focussing of the laser-driven carbon and fluorine ion beams could be achieved. At an average energy of 14.9 MeV a number of 0.99 billion C4+ ions were detected at a distance from the ion source of more than 6.0 m by a combination of radiochromic films and Thomson parabolas.

Challenging problems for the temporal bunch compression of laser-driven heavy ion beams with a three gap spiral resonator as well as viable solutions to these hurdles have been identified and already incorporated into the LIGHT beamline within the scope of this thesis. A first successful proof-of-principle of temporal bunch compression of laser-driven fluorine ion beams resulted in bunches as short as 1.3 ns (FWHM).

By successfully demonstrating the efficient generation, handling and transport of laser-driven heavy ion beams an anticipated laser-driven ion beamline for the investigation of for example the stopping power of ions in dense plasmas is within reach.

Item Type: Ph.D. Thesis
Erschienen: 2018
Creators: Ding, Johannes
Type of entry: Primary publication
Title: Generation, Handling and Transport of Laser-Driven Heavy Ion Beams
Language: English
Referees: Roth, Prof. Dr. Markus ; Boine-Frankenheim, Prof. Dr. Oliver
Date: 2018
Place of Publication: Darmstadt
Refereed: 29 October 2018
URL / URN: https://tuprints.ulb.tu-darmstadt.de/8214
Abstract:

The thesis at hand addresses the generation, handling and transport of laser-driven heavy ion beams. The presented research has been conducted within the laser and plasma physics group at the institute of nuclear physics of the Technical University of Darmstadt. The experimental campaigns contributing to the results in this thesis have been carried out at the GSI Helmholtz Center for Heavy Ion Research and were supported by their plasma physics department.

The laser-driven ion acceleration scheme target normal sheath acceleration (TNSA) enables the compact generation of intense ion bunches with kinetic energies in the range of 10s of MeV. The laser-accelerated ion beams have unique properties, such as extremely small transverse and longitudinal emittance, high numbers of ions per bunch, but also broad exponentially decaying energy spectra and high divergence. Due to the nature of the acceleration process the composition of ion species in the beam is defined by the atom population in the source area and is generally dominated by protons stemming from ever present hydro-carbon contaminations. Many anticipated applications of laser-driven ion beams rely on the efficient acceleration of heavy ions and on controlling the energy spread and the divergence of the initial TNSA beam.

In this work the efficient acceleration of carbon and fluorine ion beams by means of TNSA was demonstrated. The hydrocarbon contaminations on the surface of the coated targets were removed by means of Joule heating. Utilizing this method and the 100 TW beamline of the PHELIX laser system at GSI, kinetic energies of fourfold positively charged carbon ions C4+ of up to 68.5 MeV and of sevenfold positively charged fluorine ions F7+ of up to 180 MeV were observed.

With the help of a pulsed high-field solenoid magnet from Helmholtz Center Dresden-Rossen- dorf incorporated into the prototype beamline of the LIGHT (Laser Ion Generation, Handling and Transport) collaboration, the efficient collimation and transport as well as the energy selection by means of chromatic focussing of the laser-driven carbon and fluorine ion beams could be achieved. At an average energy of 14.9 MeV a number of 0.99 billion C4+ ions were detected at a distance from the ion source of more than 6.0 m by a combination of radiochromic films and Thomson parabolas.

Challenging problems for the temporal bunch compression of laser-driven heavy ion beams with a three gap spiral resonator as well as viable solutions to these hurdles have been identified and already incorporated into the LIGHT beamline within the scope of this thesis. A first successful proof-of-principle of temporal bunch compression of laser-driven fluorine ion beams resulted in bunches as short as 1.3 ns (FWHM).

By successfully demonstrating the efficient generation, handling and transport of laser-driven heavy ion beams an anticipated laser-driven ion beamline for the investigation of for example the stopping power of ions in dense plasmas is within reach.

Alternative Abstract:
Alternative abstract Language

Die vorliegende Dissertation behandelt die Erzeugung, Handhabung und den Transport von laser-beschleunigten Schwerionenstrahlen. Die dargestellte Forschungsarbeit wurde innerhalb der Laser- und Plasmaphysikgruppe am Institut für Kernphysik der Technischen Universität Darmstadt erbracht. Die Experimentkampagnen, die zu den Erkenntnissen dieser Arbeit beitragen, wurden am GSI Helmholtzzentrum für Schwerionenforschung mit der Unterstützung der dortigen Abteilung für Plasmaphysik durchgeführt.

Die lasergetriebene Ionenbeschleunigung mittels der sogennanten Target Normal Sheath Acceleration (TNSA) ermöglicht die kompakte Erzeugung von intensiven Ionenstrahlen, deren kinetische Energie im Bereich von einigen 10 MeV liegt. Die laserbeschleunigten Ionen weisen einzigartige Eigenschaften auf, wie eine sehr kleine transversale und longitudinale Emittanz, sehr hohe Ionenzahlen pro Paket, aber auch ein sehr breites und exponentiell zu höheren Energien abfallendes Energiespektrum und eine große Divergenz. Die Zusammensetzung der Ionensorten im Strahl hängt von der Atomzusammensetzung der Quellregion ab und ist aufgrund der Natur des Beschleungigungsmechanismus im Allgemeinen von Protonen dominiert, die aus Kohlenwasserstoffverunreinigungen der Oberfläche stammen. Viele vorraus- sichtliche Anwendungen der lasergetriebenen Ionenstrahlen sind auf die effiziente Beschleuni- gung von Schwerionen angewiesen und auch darauf, dass die Divergenz und die Energievertei- lung der ursprünglichen TNSA-Strahlen beeinflusst werden können.

In der vorliegenden Arbeit konnte die effiziente Beschleunigung von Fluor- und Kohlenstoff- ionenstrahlen durch den TNSA-Mechanismus gezeigt werden. Die Kohlenwasserstoffver- unreinigungen auf der Oberfläche der beschichteten Targets wurden durch Joule'sche Heizung entfernt. Dadurch konnten mithilfe der 100 TW Strahlführung des PHELIX Lasersystems an der GSI vierfach positiv geladene Kohlenstoffionen C4+ mit kinetischen Energien bis zu 68,5 MeV und siebenfach geladene Fluorionen F7+ mit bis zu 180 MeV erzeugt werden.

Der Einsatz eines gepulsten Hochfeld-Solenoidmagneten vom Helmholtzzentrum Dresden- Rossendorf innerhalb der Prototyp-Strahlführung der LIGHT (Laser Ion Generation, Handling and Transport) Kollaboration bot die Möglichkeit, die lasergetriebenen Fluor- und Kohlenstoff- ionenstrahlen effizient zu kollimieren und zu transportieren. Aufgrund der chromatischen Fokussierung konnte ein Teil des Ionenspektrums ausgewählt werden. In einem Abstand von mehr als 6,0 m von der Ionenquelle konnten 0,99 Milliarden C4+ Ionen mit einer durchschnittlichen Energie von 14,9 MeV nachgewiesen werden, indem radiochromatische Filme mit Thomson Parabeln kombiniert wurden.

Neben der Identifizierung herausfordernder Problemstellungen im Bezug auf die zeitliche Komprimierung von Schwerionenpaketen wurden auch gangbare Lösungen für diese Probleme aufgezeigt und bereits in die LIGHT-Strahlführung implementiert. Eine erste erfolgreiche Demonstration der effizienten zeitlichen Komprimierung von laserbeschleunigten F7+ Ionenstrahlen resultierte in 1,3 ns (FWHM) kurzen Ionenpaketen.

Die erfolgreiche effiziente Erzeugung, Handhabung und der Transport von lasergetriebenen Schwerionenstrahlen rückt eine lasergetriebene Ionenstrahlführung für beispielsweise die Untersuchung des Bremsvermögens von dichten Plasmen im Bezug auf Ionen in greifbare Nähe.

German
URN: urn:nbn:de:tuda-tuprints-82148
Classification DDC: 500 Science and mathematics > 530 Physics
Divisions: 05 Department of Physics
05 Department of Physics > Institute of Nuclear Physics
05 Department of Physics > Institute of Nuclear Physics > Experimentelle Kernphysik
05 Department of Physics > Institute of Nuclear Physics > Experimentelle Kernphysik > Laser- und Plasmaphysik
Date Deposited: 02 Dec 2018 20:55
Last Modified: 02 Dec 2018 20:55
PPN:
Referees: Roth, Prof. Dr. Markus ; Boine-Frankenheim, Prof. Dr. Oliver
Refereed / Verteidigung / mdl. Prüfung: 29 October 2018
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details