Ullrich, Torsten ; Schiefer, Andreas ; Fellner, Dieter W. (2010)
Modeling with Subdivision Surfaces.
WSCG 2010. Full Papers Proceedings.
Conference or Workshop Item, Bibliographie
Abstract
Subdivision surfaces are an established modeling tool in computer graphics and computer-aided design. While the theoretical foundations of subdivision surfaces are well studied, the correlation between a control mesh and its subdivided limit surface still has some open-ended questions: Which topology should a control mesh have? Where should control vertices be placed? A modeler - human or software - is confronted with these questions and has to answer them. In this paper we analyze four characteristic situations. Each one consists of an analytical reference surface S and several variants of control meshes Ci. In order to concentrate on the topology of the control meshes, the geometrical positions of their control vertices have been determined and optimized automatically. As a result we identified the best topology of all Ci to represent the given surface S. Based on these results we derived heuristics to model with subdivision surfaces. These heuristics are beneficial for all modelers.
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2010 |
Creators: | Ullrich, Torsten ; Schiefer, Andreas ; Fellner, Dieter W. |
Type of entry: | Bibliographie |
Title: | Modeling with Subdivision Surfaces |
Language: | English |
Date: | 2010 |
Publisher: | University of West Bohemia, Plzen |
Event Title: | WSCG 2010. Full Papers Proceedings |
Abstract: | Subdivision surfaces are an established modeling tool in computer graphics and computer-aided design. While the theoretical foundations of subdivision surfaces are well studied, the correlation between a control mesh and its subdivided limit surface still has some open-ended questions: Which topology should a control mesh have? Where should control vertices be placed? A modeler - human or software - is confronted with these questions and has to answer them. In this paper we analyze four characteristic situations. Each one consists of an analytical reference surface S and several variants of control meshes Ci. In order to concentrate on the topology of the control meshes, the geometrical positions of their control vertices have been determined and optimized automatically. As a result we identified the best topology of all Ci to represent the given surface S. Based on these results we derived heuristics to model with subdivision surfaces. These heuristics are beneficial for all modelers. |
Uncontrolled Keywords: | Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Computer graphics, Computer aided design (CAD), Subdivision surfaces, 3D Modeling |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > Interactive Graphics Systems |
Date Deposited: | 12 Nov 2018 11:16 |
Last Modified: | 04 Feb 2022 12:41 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |