Drechsler, Klaus ; Oyarzun Laura, Cristina ; Wesarg, Stefan (2013)
Hepatic Vein Segmentation Using Wavefront Propagation and Multiscale Vessel Enhancement.
Medical Imaging 2013: Image Processing. Part One.
doi: 10.1117/12.2006811
Conference or Workshop Item, Bibliographie
Abstract
Modern volumetric imaging techniques such as CT or MRI, aid in the understanding of a patient's anatomy and pathologies. Depending on the medical use case, various anatomical structures are of interest. Blood vessels play an important role in several applications, e.g. surgical planning. Manual delineation of blood vessels in volumetric images is error prone and time consuming. Automated vessel segmentation is a challenging problem due to acquisition-dependent problems such as noise, contrast, spatial resolution, and artifacts. In this paper, a vessel segmentation method is presented that combines a wavefront propagation technique with Hessian-based vessel enhancement. The latter has proven its usefulness as a preprocessing step to detect tubular structures before the actual segmentation is carried out. The former allows for an ordered growing process, which enables topological analysis. The contribution of this work is as follows. 1. A new vessel enhancement filter for tubular structures based on the Laplacian is proposed, 2. a wavefront propagation technique is proposed that prevents leaks by imposing a threshold on the maximum number of voxels that the propagating front must contain, and 3. a volumetric hole filling method is proposed to fill holes, bays, and tunnels which are caused at locations where the tubular structure assumption is violated. The proposed method reduces approximately 50 of the necessary eigenvalue calculations for vessel enhancement and prevents leaks starting at small spots, which usually occur using standard region growing. Qualitative and quantitative evaluation based on several metrics (statistical measures, dice and symmetric average surface distance) is presented.
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2013 |
Creators: | Drechsler, Klaus ; Oyarzun Laura, Cristina ; Wesarg, Stefan |
Type of entry: | Bibliographie |
Title: | Hepatic Vein Segmentation Using Wavefront Propagation and Multiscale Vessel Enhancement |
Language: | English |
Date: | 2013 |
Publisher: | SPIE Press, Bellingham |
Series: | Proceedings of SPIE; 8669 |
Event Title: | Medical Imaging 2013: Image Processing. Part One |
DOI: | 10.1117/12.2006811 |
Abstract: | Modern volumetric imaging techniques such as CT or MRI, aid in the understanding of a patient's anatomy and pathologies. Depending on the medical use case, various anatomical structures are of interest. Blood vessels play an important role in several applications, e.g. surgical planning. Manual delineation of blood vessels in volumetric images is error prone and time consuming. Automated vessel segmentation is a challenging problem due to acquisition-dependent problems such as noise, contrast, spatial resolution, and artifacts. In this paper, a vessel segmentation method is presented that combines a wavefront propagation technique with Hessian-based vessel enhancement. The latter has proven its usefulness as a preprocessing step to detect tubular structures before the actual segmentation is carried out. The former allows for an ordered growing process, which enables topological analysis. The contribution of this work is as follows. 1. A new vessel enhancement filter for tubular structures based on the Laplacian is proposed, 2. a wavefront propagation technique is proposed that prevents leaks by imposing a threshold on the maximum number of voxels that the propagating front must contain, and 3. a volumetric hole filling method is proposed to fill holes, bays, and tunnels which are caused at locations where the tubular structure assumption is violated. The proposed method reduces approximately 50 of the necessary eigenvalue calculations for vessel enhancement and prevents leaks starting at small spots, which usually occur using standard region growing. Qualitative and quantitative evaluation based on several metrics (statistical measures, dice and symmetric average surface distance) is presented. |
Uncontrolled Keywords: | Vesselness, Liver, Segmentation |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > Interactive Graphics Systems |
Date Deposited: | 12 Nov 2018 11:16 |
Last Modified: | 12 Nov 2018 11:16 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |