Alberio, Laura ; Locarno, Andrea ; Saponaro, Andrea ; Romano, Edoardo ; Bercier, Valérie ; Albadri, Shahad ; Simeoni, Frederica ; Moleri, Silvia ; Pelucchi, Silvia ; Porro, Alessandro ; Marcello, Elena ; Barsotti, Noemi ; Kukovetz, Kerri ; Boender, Arjen J. ; Contestabile, Andrea ; Luo, Shizhen ; Moutal, Aubin ; Ji, Yingshi ; Romani, Giulia ; Beltrame, Monica ; Del Bene, Filippo ; Di Luca, Monica ; Khanna, Rajesh ; Colecraft, Henry M. ; Pasqualetti, Massimo ; Thiel, Gerhard ; Tonini, Raffaella ; Moroni, Anna (2018)
A light-gated potassium channel for sustained neuronal inhibition.
In: Nature methods, 15 (11)
Article, Bibliographie
Abstract
Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.
Item Type: | Article |
---|---|
Erschienen: | 2018 |
Creators: | Alberio, Laura ; Locarno, Andrea ; Saponaro, Andrea ; Romano, Edoardo ; Bercier, Valérie ; Albadri, Shahad ; Simeoni, Frederica ; Moleri, Silvia ; Pelucchi, Silvia ; Porro, Alessandro ; Marcello, Elena ; Barsotti, Noemi ; Kukovetz, Kerri ; Boender, Arjen J. ; Contestabile, Andrea ; Luo, Shizhen ; Moutal, Aubin ; Ji, Yingshi ; Romani, Giulia ; Beltrame, Monica ; Del Bene, Filippo ; Di Luca, Monica ; Khanna, Rajesh ; Colecraft, Henry M. ; Pasqualetti, Massimo ; Thiel, Gerhard ; Tonini, Raffaella ; Moroni, Anna |
Type of entry: | Bibliographie |
Title: | A light-gated potassium channel for sustained neuronal inhibition. |
Language: | English |
Date: | November 2018 |
Journal or Publication Title: | Nature methods |
Volume of the journal: | 15 |
Issue Number: | 11 |
Abstract: | Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation. |
Identification Number: | pmid:30377377 |
Divisions: | 10 Department of Biology 10 Department of Biology > Plant Membrane Biophyscis (20.12.23 renamed in Biology of Algae and Protozoa) |
Date Deposited: | 05 Nov 2018 12:55 |
Last Modified: | 31 Jan 2019 13:53 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |