TU Darmstadt / ULB / TUbiblio

Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling

Rohrer, Jochen ; Vrankovic, Dragoljub ; Cupid, Damian ; Riedel, Ralf ; Seifert, Hans J. ; Albe, Karsten ; Graczyk-Zajac, Magdalena (2017)
Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling.
In: International Journal of Materials Research, 108 (11)
doi: 10.3139/146.111517
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Novel nanocomposites consisting of silicon/tin nanoparticles (n-Si/n-Sn) embedded in silicon carbonitride (SiCN) or silicon oxycarbide (SiOC) ceramic matrices are investigated as possible anode materials for Li-ion batteries. The goal of our study is to exploit the large mass specific capacity of Si/Sn (3 579 mAh g−1/994 mAh g−1), while avoiding rapid capacity fading due to the large volume changes of Si/Sn during Li insertion. We show that a large amount (∼30–40 wt.%) of disordered carbon phase is dispersed within the SiOC/SiCN matrix and stabilizes the Si/Sn nanoparticles with respect to extended reversible lithium ion storage. Silicon nanocomposites are prepared by mixing of a polymeric precursor with commercial and “home-synthesized” crystalline and amorphous silicon. Tin nanocomposites, in contrast, are prepared using a single precursor approach, which allows the in-situ generation of Sn nanoparticles homogeneously dispersed within the SiOC host. The best electrochemical stability along with capacities of 600 – 700 mAh g−1 is obtained when amorphous/porous silicon is used. Mechanisms contributing to the increase of storage capacity and the cycle stability are clarified by analyzing elemental composition, local solid-state structures, intercalation hosts and Li-ion mobility. Our work is supplemented by first-principles based atomistic modeling and thermochemical measurements.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Rohrer, Jochen ; Vrankovic, Dragoljub ; Cupid, Damian ; Riedel, Ralf ; Seifert, Hans J. ; Albe, Karsten ; Graczyk-Zajac, Magdalena
Art des Eintrags: Bibliographie
Titel: Si- and Sn-containing SiOCN-based nanocomposites as anode materials for lithium ion batteries: synthesis, thermodynamic characterization and modeling
Sprache: Englisch
Publikationsjahr: November 2017
Verlag: Carl Hanser Verlag GmbH & Co. KG
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Materials Research
Jahrgang/Volume einer Zeitschrift: 108
(Heft-)Nummer: 11
DOI: 10.3139/146.111517
URL / URN: https://doi.org/10.3139/146.111517
Kurzbeschreibung (Abstract):

Novel nanocomposites consisting of silicon/tin nanoparticles (n-Si/n-Sn) embedded in silicon carbonitride (SiCN) or silicon oxycarbide (SiOC) ceramic matrices are investigated as possible anode materials for Li-ion batteries. The goal of our study is to exploit the large mass specific capacity of Si/Sn (3 579 mAh g−1/994 mAh g−1), while avoiding rapid capacity fading due to the large volume changes of Si/Sn during Li insertion. We show that a large amount (∼30–40 wt.%) of disordered carbon phase is dispersed within the SiOC/SiCN matrix and stabilizes the Si/Sn nanoparticles with respect to extended reversible lithium ion storage. Silicon nanocomposites are prepared by mixing of a polymeric precursor with commercial and “home-synthesized” crystalline and amorphous silicon. Tin nanocomposites, in contrast, are prepared using a single precursor approach, which allows the in-situ generation of Sn nanoparticles homogeneously dispersed within the SiOC host. The best electrochemical stability along with capacities of 600 – 700 mAh g−1 is obtained when amorphous/porous silicon is used. Mechanisms contributing to the increase of storage capacity and the cycle stability are clarified by analyzing elemental composition, local solid-state structures, intercalation hosts and Li-ion mobility. Our work is supplemented by first-principles based atomistic modeling and thermochemical measurements.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 11 Dez 2017 12:30
Letzte Änderung: 28 Jan 2019 14:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen