TU Darmstadt / ULB / TUbiblio

Development of an Ethanol Combustion Mechanism Based on a Hierarchical Optimization Approach

Olm, C. ; Varga, T. ; Valkó, E ; Hartl, S. ; Hasse, C. ; Turányi, T. (2016)
Development of an Ethanol Combustion Mechanism Based on a Hierarchical Optimization Approach.
In: International Journal of Chemical Kinetics, 48 (8)
doi: 10.1002/kin.20998
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A detailed reaction mechanism for ethanol combustion was developed for describing ignition, flame propagation, and species concentration profiles with high accuracy. Starting from a modified version of the ethanol combustion mechanism of Saxena and Williams (Proc. Combust. Inst. 2007, 31, 1149–1156) and adopting the H2/CO base chemistry from the joint optimized hydrogen and syngas combustion mechanism of Varga et al. (Int. J. Chem. Kinet. 2016, 48, 407–422), an optimization of 54 Arrhenius parameters of 16 important elementary C1/C2 reactions was performed using several thousand direct and indirect measurement data points as well as the results of theoretical determinations of reaction rate coefficients. The final optimized mechanism was compared to 16 reaction mechanisms that have been used for the simulation of ethanol combustion with respect to the accuracy in reproducing the available experimental data, including measurements of ignition delay times in shock tubes (444 data points in 39 data sets) and rapid compression machines (20/3), laminar burning velocity measurements (1011/124), and species profiles measured using flow reactors (1750/23), jet-stirred reactors (398/6) and shock tubes (8871/14). In addition to providing best fitted values for 54 Arrhenius parameters, the covariance matrix of the optimized parameters was calculated, which provides a description of the temperature-dependent ranges of uncertainty for each of the optimized rate coefficients.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Olm, C. ; Varga, T. ; Valkó, E ; Hartl, S. ; Hasse, C. ; Turányi, T.
Art des Eintrags: Bibliographie
Titel: Development of an Ethanol Combustion Mechanism Based on a Hierarchical Optimization Approach
Sprache: Englisch
Publikationsjahr: 2016
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Chemical Kinetics
Jahrgang/Volume einer Zeitschrift: 48
(Heft-)Nummer: 8
DOI: 10.1002/kin.20998
URL / URN: http://dx.doi.org/10.1002/kin.20998
Kurzbeschreibung (Abstract):

A detailed reaction mechanism for ethanol combustion was developed for describing ignition, flame propagation, and species concentration profiles with high accuracy. Starting from a modified version of the ethanol combustion mechanism of Saxena and Williams (Proc. Combust. Inst. 2007, 31, 1149–1156) and adopting the H2/CO base chemistry from the joint optimized hydrogen and syngas combustion mechanism of Varga et al. (Int. J. Chem. Kinet. 2016, 48, 407–422), an optimization of 54 Arrhenius parameters of 16 important elementary C1/C2 reactions was performed using several thousand direct and indirect measurement data points as well as the results of theoretical determinations of reaction rate coefficients. The final optimized mechanism was compared to 16 reaction mechanisms that have been used for the simulation of ethanol combustion with respect to the accuracy in reproducing the available experimental data, including measurements of ignition delay times in shock tubes (444 data points in 39 data sets) and rapid compression machines (20/3), laminar burning velocity measurements (1011/124), and species profiles measured using flow reactors (1750/23), jet-stirred reactors (398/6) and shock tubes (8871/14). In addition to providing best fitted values for 54 Arrhenius parameters, the covariance matrix of the optimized parameters was calculated, which provides a description of the temperature-dependent ranges of uncertainty for each of the optimized rate coefficients.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
Hinterlegungsdatum: 15 Nov 2017 15:25
Letzte Änderung: 03 Jun 2018 21:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen