TU Darmstadt / ULB / TUbiblio

Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors

Stoesser, Anna ; Seggern, Falk von ; Purohit, Suneeti ; Nasr, Babak ; Kruk, Robert ; Dehm, Simone ; Wang, Di ; Hahn, Horst ; Dasgupta, Subho (2016)
Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors.
In: Nanotechnology, 27 (41)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm(2) V-1 s(-1).

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Stoesser, Anna ; Seggern, Falk von ; Purohit, Suneeti ; Nasr, Babak ; Kruk, Robert ; Dehm, Simone ; Wang, Di ; Hahn, Horst ; Dasgupta, Subho
Art des Eintrags: Bibliographie
Titel: Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors
Sprache: Englisch
Publikationsjahr: 2016
Verlag: IOP PUBLISHING LTD, England
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanotechnology
Jahrgang/Volume einer Zeitschrift: 27
(Heft-)Nummer: 41
URL / URN: https://doi.org/10.1088/0957-4484/27/41/415205
Kurzbeschreibung (Abstract):

Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm(2) V-1 s(-1).

Freie Schlagworte: nanowires, oxide semiconductors, field-effect Transistors, polypyrrole, MOSFETs, copper oxide
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 26 Jul 2017 07:52
Letzte Änderung: 28 Feb 2022 12:32
PPN:
Sponsoren: The authors would like to acknowledge the financial support from Helmholtz Association in the form of Helmholtz Virtual Institute VI-530.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen