TU Darmstadt / ULB / TUbiblio

Characterization of the slow DNA double-strand break repair component in G1 phase

Steinlage, Monika :
Characterization of the slow DNA double-strand break repair component in G1 phase.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/6132]
Technische Universität , Darmstadt
[Dissertation], (2017)

Offizielle URL: http://tuprints.ulb.tu-darmstadt.de/6132

Kurzbeschreibung (Abstract)

DNA double-strand breaks (DSBs) represent the most deleterious type of DNA damage as they pose a serious threat to genome integrity. Two major pathways are available for the repair of DSBs: canonical non-homologous end joining (c-NHEJ) and homologous recombination (HR). During c-NHEJ, the DSB ends are re-ligated after minimal end processing steps. The HR pathway is more complex and is initiated by CtIP-dependent DSB end resection to form 3’ ssDNA overhangs for subsequent homology search in the sister chromatid. In wild type human G1-phase cells only c-NHEJ is available for DSB repair, as in this cell cycle phase the homologous sister chromatid required for HR is missing. DSB repair in G1, as well as in G2, shows biphasic kinetics consisting of a fast component that repairs the majority of breaks within the first few hours after damage induction, followed by a slow component that repairs the remaining breaks. The fast component in both G1 and G2 phase is well characterized and represents c-NHEJ, while the slow component in G2 represents repair by HR. Previous work has suggested that the slow repair component in G1 represents a sub-pathway of NHEJ that requires the activities of Artemis and ATM. However, the mechanism underlying the slow repair component in G1 is not fully understood and its characterization was the focus of this work. To specifically study slow repair in G1, high LET α-particle radiation was used to induce complex DNA damages that are repaired with slow kinetics. RPA rapidly binds ssDNA in the cell to protect it from nucleolytic degradation and is phosphorylated in response to DNA damage. Exploiting the qualities of α–particle radiation, an assay was developed to monitor pRPA-foci formation in G1 and used as a tool to measure DSB end resection in this cell-cycle phase. Another approach to study the slow repair component was the quantification of γH2AX foci, a histone modification in response to DSBs, at late time points post IR. Collectively, it was shown that slowly repairing DSBs in G1 undergo resection and subsequent repair by c-NHEJ. This pathway is regulated by Plk3, which after DNA damage phosphorylates CtIP on amino acids Ser327 and Thr847 in G1. Using the pRPA assay, it was demonstrated that Plk3 phosphorylates CtIP on these amino acid residues to promote resection. CtIP phosphorylation on Ser327 also mediates its interaction with Brca1 in G1, which antagonizes 53BP1 to allow resection. The results indicate that the interaction of CtIP and Brca1 is required to promote resection in G1, while depletion of 53BP1 causes hyper-resection of DSBs in G1. The primary function of Brca1 in G1 appears to be the displacement of 53BP1, similar to the mechanism in G2. Furthermore, a number of nucleases required for G1 resection were identified. Similar to the process in G2, G1 resection requires the exonuclease activities of Exo1, EXD2 and Mre11. Contrary to G2, the endonuclease activity of Mre11 is dispensable in G1, as are the activities of BLM/DNA2. Thus, it is proposed that resection in G1 might be initiated from the break end and therefore differs from the mechanism in G2 where Mre11 endonuclease function initiates bi-directional resection several hundred nucleotides away from the break end. γH2AX studies indicated that Artemis, an endonuclease which is specifically required for DBS repair during the slow component, functions downstream of the aforementioned factors. Thus, it is proposed that once resection is initiated in G1, resection intermediates have to be resolved by Artemis to complete repair. Finally, the results indicate that break ends are rejoined via a c-NHEJ process, therefore it was hypothesized that the Ku70/80 heterodimer stays bound to the DSB ends throughout the entire repair time and translocates inwards to expose DNA ends for resection while at the same time limiting the process. Immunofluorescence data support this notion by providing evidence that Ku80 co-localizes with pRPA in G1. Compared to resection in G2, which is always followed up by error-free repair via HR, resection in G1 needs to be much more limited in length. Future work will focus on the elucidation of the mechanisms restricting the extent of resection in G1.

Typ des Eintrags: Dissertation
Erschienen: 2017
Autor(en): Steinlage, Monika
Titel: Characterization of the slow DNA double-strand break repair component in G1 phase
Sprache: Englisch
Kurzbeschreibung (Abstract):

DNA double-strand breaks (DSBs) represent the most deleterious type of DNA damage as they pose a serious threat to genome integrity. Two major pathways are available for the repair of DSBs: canonical non-homologous end joining (c-NHEJ) and homologous recombination (HR). During c-NHEJ, the DSB ends are re-ligated after minimal end processing steps. The HR pathway is more complex and is initiated by CtIP-dependent DSB end resection to form 3’ ssDNA overhangs for subsequent homology search in the sister chromatid. In wild type human G1-phase cells only c-NHEJ is available for DSB repair, as in this cell cycle phase the homologous sister chromatid required for HR is missing. DSB repair in G1, as well as in G2, shows biphasic kinetics consisting of a fast component that repairs the majority of breaks within the first few hours after damage induction, followed by a slow component that repairs the remaining breaks. The fast component in both G1 and G2 phase is well characterized and represents c-NHEJ, while the slow component in G2 represents repair by HR. Previous work has suggested that the slow repair component in G1 represents a sub-pathway of NHEJ that requires the activities of Artemis and ATM. However, the mechanism underlying the slow repair component in G1 is not fully understood and its characterization was the focus of this work. To specifically study slow repair in G1, high LET α-particle radiation was used to induce complex DNA damages that are repaired with slow kinetics. RPA rapidly binds ssDNA in the cell to protect it from nucleolytic degradation and is phosphorylated in response to DNA damage. Exploiting the qualities of α–particle radiation, an assay was developed to monitor pRPA-foci formation in G1 and used as a tool to measure DSB end resection in this cell-cycle phase. Another approach to study the slow repair component was the quantification of γH2AX foci, a histone modification in response to DSBs, at late time points post IR. Collectively, it was shown that slowly repairing DSBs in G1 undergo resection and subsequent repair by c-NHEJ. This pathway is regulated by Plk3, which after DNA damage phosphorylates CtIP on amino acids Ser327 and Thr847 in G1. Using the pRPA assay, it was demonstrated that Plk3 phosphorylates CtIP on these amino acid residues to promote resection. CtIP phosphorylation on Ser327 also mediates its interaction with Brca1 in G1, which antagonizes 53BP1 to allow resection. The results indicate that the interaction of CtIP and Brca1 is required to promote resection in G1, while depletion of 53BP1 causes hyper-resection of DSBs in G1. The primary function of Brca1 in G1 appears to be the displacement of 53BP1, similar to the mechanism in G2. Furthermore, a number of nucleases required for G1 resection were identified. Similar to the process in G2, G1 resection requires the exonuclease activities of Exo1, EXD2 and Mre11. Contrary to G2, the endonuclease activity of Mre11 is dispensable in G1, as are the activities of BLM/DNA2. Thus, it is proposed that resection in G1 might be initiated from the break end and therefore differs from the mechanism in G2 where Mre11 endonuclease function initiates bi-directional resection several hundred nucleotides away from the break end. γH2AX studies indicated that Artemis, an endonuclease which is specifically required for DBS repair during the slow component, functions downstream of the aforementioned factors. Thus, it is proposed that once resection is initiated in G1, resection intermediates have to be resolved by Artemis to complete repair. Finally, the results indicate that break ends are rejoined via a c-NHEJ process, therefore it was hypothesized that the Ku70/80 heterodimer stays bound to the DSB ends throughout the entire repair time and translocates inwards to expose DNA ends for resection while at the same time limiting the process. Immunofluorescence data support this notion by providing evidence that Ku80 co-localizes with pRPA in G1. Compared to resection in G2, which is always followed up by error-free repair via HR, resection in G1 needs to be much more limited in length. Future work will focus on the elucidation of the mechanisms restricting the extent of resection in G1.

Ort: Darmstadt
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Radiation Biology and DNA Repair
Hinterlegungsdatum: 30 Apr 2017 19:55
Offizielle URL: http://tuprints.ulb.tu-darmstadt.de/6132
URN: urn:nbn:de:tuda-tuprints-61321
Gutachter / Prüfer: Löbrich, Prof. Dr. Markus ; Löwer, Prof. Dr. Alexander
Datum der Begutachtung bzw. der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 17 März 2017
Alternatives oder übersetztes Abstract:
AbstractSprache
DNA-Doppelstrangbrüche (DSBs) zählen zu den schwerwiegendsten DNA Schäden, da sie die Integrität des Genoms gefährden. Für die Reparatur von DSBs stehen zwei Hauptreparaturwege zur Verfügung: die klassische nicht-homologe Endverknüpfung (c-NHEJ) und die homologe Rekombination (HR). Beim c-NHEJ werden die DSB-Enden nach minimalen Prozessierungsschritten wieder zusammengefügt. Die HR ist ein komplexerer Prozess, der mit dem CtIP-abhängigen nukleolytischen Verdau des 5'-Endes beginnt, um einen 3'-einzelsträngigen Überhang für die Homologiesuche im Schwesterchromatid zu erzeugen. In humanen Wildtyp-Zellen, die sich in der G1-Phase befinden, können DSBs nur durch das c- NHEJ repariert werden, da in dieser Zellzyklusphase das homologe Schwesterchromatid, welches für die HR gebraucht wird, nicht zur Verfügung steht. Die DSB-Reparatur in G1 und G2 weist eine biphasische Reparaturkinetik auf. Diese besteht aus einer schnellen Reparaturkomponente, in der die Mehrheit der Brüche innerhalb der ersten paar Stunden nach Schadensinduktion repariert wird, gefolgt von einer langsamen Reparaturkomponente. Die schnelle Komponente in G1 und in G2 stellt die Reparatur durch das c-NHEJ dar, während Brüche in der langsamen Komponente in G2 mittels HR repariert werden. Frühere Studien konnten zeigen, dass die langsame Komponente einen Unterweg des NHEJ darstellt, der Artemis- und ATM-Funktionen benötigt. Desweiteren konnte gezeigt werden, dass CtIP auch eine Rolle bei der Reparatur in der G1-Phase spielt, der genaue Mechanismus der langsamen Reparatur in G1 war jedoch unklar. Daher lag der Fokus dieser Arbeit darauf, die langsame Reparaturkomponente in G1 zu charakterisieren. Um die langsame Reparaturkomponente gezielt zu untersuchen, wurde in dieser Arbeit α- Teilchen-Strahlung genutzt, um komplexe DNA-Schäden zu erzeugen, die mit langsamer Kinetik repariert werden. RPA bindet schnell an entstehende einzelsträngige DNA in der Zelle, um diese vor nukleolytischem Verdau zu schützen und wird nach Bestrahlung phosphoryliert. Die Eigenschaften von α-Teilchen-Strahlung wurden genutzt, um einen Ansatz zu entwickeln, mithilfe dessen es möglich war pRPA-Foci in G1 zu messen. Diese Methode wurde genutzt, um die Resektion von DSB-Enden in der G1-Phase zu untersuchen. Eine weitere Methode, mit welcher die langsame Reparaturkomponente in G1 untersucht wurde, war die Quantifizierung von γH2AX-Foci zu späten Zeitpunkten nach Bestrahlung. γH2AX ist eine Histonmodifikation, die um einen DSB herum auftritt. In dieser Arbeit konnte gezeigt werden, dass langsam reparierende DSBs in G1 resektiert werden und anschließend mittels c-NHEJ repariert werden. Dieser Reparaturweg wird von Plk3 reguliert, welche nach DNA-Schadensinduktion in G1 CtIP an den Aminosäuren Ser327 und Thr947 phosphoryliert. Mithilfe von pRPA-Focimessungen konnte gezeigt werden, dass CtIP an diesen Aminosäuren von Plk3 phosphoryliert werden muss, um Resektion zu gewährleisten. Desweiteren ermöglicht die Phosphorylierung von CtIP an Ser327 auch eine Interaktion mit Brca1 in G1. Brca1 wird gebraucht, um 53BP1 in G1 zu antagonisieren. Die Interaktion zwischen CtIP und Brca1 wird für die Resektion in G1 benötigt, während eine Depletion von 53BP1 zu erhöhter Resektion führt. Die Funktion von Brca1 in G1 scheint die Verdrängung von 53BP1 vom Bruchende zu sein, ähnlich wie es für G2 beschrieben wurde. Desweiteren wurden eine Reihe Nukleasen identifiziert, die an der Resektion in G1 beteiligt sind. Ähnlich wie in G2 werden die Exonuklease-Funktionen von Exo1, EXD2 und Mre11 für die Resektion in G1 benötigt. Im Gegensatz zu G2 sind BLM/DNA2 und die Endonuklease- Funktion von Mre11 dagegen nicht an der Resektion in G1 beteiligt. Daher ist es denkbar, dass die Resektion in G1 vom Bruchende initiiert wird. Der Mechanismus ist somit anders als in G2, wo die Endonuklease-Funktion von Mre11 die bi-direktionale Resektion mehrere hundert Nukleotide entfernt vom Bruchende initiiert. γH2AX-Studien haben gezeigt, dass Artemis downstream der bisher erläuterten Faktoren wirkt. Daher wird ein Modell vorgeschlagen, in dem die durch Resektion entstandenen Intermediate von Artemis aufgelöst werden müssen um die Reparatur abzuschließen. Abschließend konnte gezeigt werden, dass die Bruchenden durch c-NHEJ zusammengefügt werden. Daher wurde postuliert, dass der Ku70/80-Heterodimer während der gesamten Reparaturzeit am Bruchende sitzt und sich langsam vom Bruchende wegbewegt, um die DNA- Enden für die Resektion freizugeben und gleichzeitig die Resektionslänge zu begrenzen. Diese Hypothese wurde durch Immunfluoreszensbilder von kolokalisierenden Ku80- und pRPA-Foci in G1 unterstützt. Im Vergleich mit Resektion in G2, auf die immer die fehlerfreie HR folgt, muss die Resektionslänge in G1 limitiert sein. Weitere Studien werden sich damit befassen, wie die Resektion in G1 begrenzt wird.Deutsch
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen