TU Darmstadt / ULB / TUbiblio

Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation

Reis, Wieland G. and Tomović, Željko and Weitz, R. Thomas and Krupke, Ralph and Mikhael, Jules (2017):
Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation.
In: Scientific Reports, pp. 44812 (1--9), 7, ISSN 2045-2322, [Online-Edition: http://doi.org/10.1038/srep44812],
[Article]

Abstract

The potential of single–walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

Item Type: Article
Erschienen: 2017
Creators: Reis, Wieland G. and Tomović, Željko and Weitz, R. Thomas and Krupke, Ralph and Mikhael, Jules
Title: Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation
Language: English
Abstract:

The potential of single–walled carbon nanotubes (SWCNTs) to outperform silicon in electronic application was finally enabled through selective separation of semiconducting nanotubes from the as-synthesized statistical mix with polymeric dispersants. Such separation methods provide typically high semiconducting purity samples with narrow diameter distribution, i.e. almost single chiralities. But for a wide range of applications high purity mixtures of small and large diameters are sufficient or even required. Here we proof that weak field centrifugation is a diameter independent method for enrichment of semiconducting nanotubes. We show that the non-selective and strong adsorption of polyarylether dispersants on nanostructured carbon surfaces enables simple separation of diverse raw materials with different SWCNT diameter. In addition and for the first time, we demonstrate that increased temperature enables higher purity separation. Furthermore we show that the mode of action behind this electronic enrichment is strongly connected to both colloidal stability and protonation. By giving simple access to electronically sorted SWCNTs of any diameter, the wide dynamic range of weak field centrifugation can provide economical relevance to SWCNTs.

Journal or Publication Title: Scientific Reports
Volume: 7
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Fachgebiet Molekulare Nanostrukturen
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences
Date Deposited: 24 Apr 2017 05:57
Official URL: http://doi.org/10.1038/srep44812
Identification Number: doi:10.1038/srep44812
Export:

Optionen (nur für Redakteure)

View Item View Item