TU Darmstadt / ULB / TUbiblio

Polarization-Mediated Modulation of Electronic and Transport Properties of Hybrid MoS_2–BaTiO_3–SrRuO_3 Tunnel Junctions

Li, Tao ; Sharma, Pankaj ; Lipatov, Alexey ; Lee, Hyungwoo ; Lee, Jung-Woo ; Zhuravlev, Mikhail Y. ; Paudel, Tula R. ; Genenko, Yuri A. ; Eom, Chang-Beom ; Tsymbal, Evgeny Y. ; Sinitskii, Alexander ; Gruverman, Alexei (2017)
Polarization-Mediated Modulation of Electronic and Transport Properties of Hybrid MoS_2–BaTiO_3–SrRuO_3 Tunnel Junctions.
In: Nano Letters, 17 (2)
doi: 10.1021/acs.nanolett.6b04247
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Hybrid structures composed of ferroelectric thin films and functional two-dimensional (2D) materials may exhibit unique characteristics and reveal new phenomena due to the cross-interface coupling between their intrinsic properties. In this report, we demonstrate a symbiotic interplay between spontaneous polarization of the ultrathin BaTiO_3 ferroelectric film and conductivity of the adjacent molybdenum disulfide (MoS_2) layer, a 2D narrow-bandgap semiconductor. Polarization-induced modulation of the electronic properties of MoS_2 results in a giant tunneling electroresistance effect in the hybrid MoS_2–BaTiO_3–SrRuO_3 ferroelectric tunnel junctions (FTJs) with an OFF-to-ON resistance ratio as high as 10^4, a 50-fold increase in comparison with the same type of FTJs with metal electrodes. The effect stems from the reversible accumulation-depletion of the majority carriers in the MoS_2 electrode in response to ferroelectric switching, which alters the barrier at the MoS_2–BaTiO_3 interface. Continuous tunability of resistive states realized via stable sequential domain structures in BaTiO_3 adds memristive functionality to the hybrid FTJs. The use of narrow band 2D semiconductors in conjunction with ferroelectric films provides a novel pathway for development of the electronic devices with enhanced performance.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Li, Tao ; Sharma, Pankaj ; Lipatov, Alexey ; Lee, Hyungwoo ; Lee, Jung-Woo ; Zhuravlev, Mikhail Y. ; Paudel, Tula R. ; Genenko, Yuri A. ; Eom, Chang-Beom ; Tsymbal, Evgeny Y. ; Sinitskii, Alexander ; Gruverman, Alexei
Art des Eintrags: Bibliographie
Titel: Polarization-Mediated Modulation of Electronic and Transport Properties of Hybrid MoS_2–BaTiO_3–SrRuO_3 Tunnel Junctions
Sprache: Englisch
Publikationsjahr: 17 Januar 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nano Letters
Jahrgang/Volume einer Zeitschrift: 17
(Heft-)Nummer: 2
DOI: 10.1021/acs.nanolett.6b04247
Kurzbeschreibung (Abstract):

Hybrid structures composed of ferroelectric thin films and functional two-dimensional (2D) materials may exhibit unique characteristics and reveal new phenomena due to the cross-interface coupling between their intrinsic properties. In this report, we demonstrate a symbiotic interplay between spontaneous polarization of the ultrathin BaTiO_3 ferroelectric film and conductivity of the adjacent molybdenum disulfide (MoS_2) layer, a 2D narrow-bandgap semiconductor. Polarization-induced modulation of the electronic properties of MoS_2 results in a giant tunneling electroresistance effect in the hybrid MoS_2–BaTiO_3–SrRuO_3 ferroelectric tunnel junctions (FTJs) with an OFF-to-ON resistance ratio as high as 10^4, a 50-fold increase in comparison with the same type of FTJs with metal electrodes. The effect stems from the reversible accumulation-depletion of the majority carriers in the MoS_2 electrode in response to ferroelectric switching, which alters the barrier at the MoS_2–BaTiO_3 interface. Continuous tunability of resistive states realized via stable sequential domain structures in BaTiO_3 adds memristive functionality to the hybrid FTJs. The use of narrow band 2D semiconductors in conjunction with ferroelectric films provides a novel pathway for development of the electronic devices with enhanced performance.

Freie Schlagworte: 2D materials; ferroelectric tunnel junctions; MoS2; Resistive switching
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 24 Mär 2017 13:08
Letzte Änderung: 24 Mär 2017 13:08
PPN:
Sponsoren: This work was supported by the National Science Foundation (NSF) through Materials Research Science and Engineering Center (MRSEC) under Grant DMR-1420645 (thin fi lm fabrication and theoretical modeling) and under grant no. ECCS-1509874 (tunnel junction, fabrication and electrical characterization). The authors also acknowledge the support by the Center for Nanoferroic Devices (CNFD), a Semi- conductor Research Corporation Nanoelectronics Research Initiative (SRC-NRI) under task ID 2398.002, sponsored by, NIST and the Nanoelectronics Research Corporation (NERC).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen