TU Darmstadt / ULB / TUbiblio

Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis.

Groß, Christine ; Hamacher, Kay ; Schmitz, Katja ; Jager, Sven (2017)
Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis.
In: Journal of chemical information and modeling, 57 (2)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The Fusarium solani cutinase (FsC) is a promising candidate for the enzymatic degradation of the synthetic polyester polyethylene terephthalate (PET) but still suffers from a lack of activity. Using atomic MD simulations with different concentrations of cleavage product ethylene glycol (EG), we show influences of EG on the dynamic of FsC. We observed accumulation of EG in the active site region reducing the local flexibility of FsC. Furthermore, we used a coarse-grained mechanical model to investigate whether substrate binding in the active site causes an induced fit. We observed this supposed induced fit or "breath-like" movement during substrate binding indicating that the active site has to be flexible for substrate conversion. This guides rational design: mutants with an increased flexibility near the active site should be considered to compensate the solvent-mediated reduction in activity.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Groß, Christine ; Hamacher, Kay ; Schmitz, Katja ; Jager, Sven
Art des Eintrags: Bibliographie
Titel: Cleavage Product Accumulation Decreases the Activity of Cutinase during PET Hydrolysis.
Sprache: Englisch
Publikationsjahr: 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of chemical information and modeling
Jahrgang/Volume einer Zeitschrift: 57
(Heft-)Nummer: 2
Kurzbeschreibung (Abstract):

The Fusarium solani cutinase (FsC) is a promising candidate for the enzymatic degradation of the synthetic polyester polyethylene terephthalate (PET) but still suffers from a lack of activity. Using atomic MD simulations with different concentrations of cleavage product ethylene glycol (EG), we show influences of EG on the dynamic of FsC. We observed accumulation of EG in the active site region reducing the local flexibility of FsC. Furthermore, we used a coarse-grained mechanical model to investigate whether substrate binding in the active site causes an induced fit. We observed this supposed induced fit or "breath-like" movement during substrate binding indicating that the active site has to be flexible for substrate conversion. This guides rational design: mutants with an increased flexibility near the active site should be considered to compensate the solvent-mediated reduction in activity.

ID-Nummer: pmid:28128951
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Computational Biology and Simulation
07 Fachbereich Chemie
07 Fachbereich Chemie > Clemens-Schöpf-Institut > Fachgebiet Biochemie
07 Fachbereich Chemie > Clemens-Schöpf-Institut > Fachgebiet Biochemie > Biologische Chemie
Hinterlegungsdatum: 13 Feb 2017 11:36
Letzte Änderung: 23 Apr 2020 09:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen