TU Darmstadt / ULB / TUbiblio

Receding-horizon planning using recursive Monte Carlo Tree Search with Sparse Action Sampling for continuous state and action spaces

Schneider, Moritz (2016):
Receding-horizon planning using recursive Monte Carlo Tree Search with Sparse Action Sampling for continuous state and action spaces.
In: American Control Conference (ACC), Boston, MA, USA, 6-8 July 2016, [Conference or Workshop Item]

Item Type: Conference or Workshop Item
Erschienen: 2016
Creators: Schneider, Moritz
Title: Receding-horizon planning using recursive Monte Carlo Tree Search with Sparse Action Sampling for continuous state and action spaces
Language: English
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik
18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik > Control Methods and Robotics
Event Title: American Control Conference (ACC)
Event Location: Boston, MA, USA
Event Dates: 6-8 July 2016
Date Deposited: 16 Jan 2017 09:51
Export:

Optionen (nur für Redakteure)

View Item View Item