TU Darmstadt / ULB / TUbiblio

How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability.

Jeggo, Penny A. and Löbrich, Markus :
How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability.
In: The Biochemical journal, 471 (1) pp. 1-11. ISSN 1470-8728
[Article] , (2015)

Abstract

DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.

Item Type: Article
Erschienen: 2015
Creators: Jeggo, Penny A. and Löbrich, Markus
Title: How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability.
Language: English
Abstract:

DNA DSBs (double-strand breaks) are a significant threat to the viability of a normal cell, since they can result in loss of genetic material if mitosis or replication is attempted in their presence. Consequently, evolutionary pressure has resulted in multiple pathways and responses to enable DSBs to be repaired efficiently and faithfully. Cancer cells, which are under pressure to gain genomic instability, have a striking ability to avoid the elegant mechanisms by which normal cells maintain genomic stability. Current models suggest that, in normal cells, DSB repair occurs in a hierarchical manner that promotes rapid and efficient rejoining first, with the utilization of additional steps or pathways of diminished accuracy if rejoining is unsuccessful or delayed. In the present review, we evaluate the fidelity of DSB repair pathways and discuss how cancer cells promote the utilization of less accurate processes. Homologous recombination serves to promote accuracy and stability during replication, providing a battlefield for cancer to gain instability. Non-homologous end-joining, a major DSB repair pathway in mammalian cells, usually operates with high fidelity and only switches to less faithful modes if timely repair fails. The transition step is finely tuned and provides another point of attack during tumour progression. In addition to DSB repair, a DSB signalling response activates processes such as cell cycle checkpoint arrest, which enhance the possibility of accurate DSB repair. We consider the ways by which cancers modify and hijack these processes to gain genomic instability.

Journal or Publication Title: The Biochemical journal
Volume: 471
Number: 1
Divisions: 10 Department of Biology
10 Department of Biology > Radiation Biology and DNA Repair
Date Deposited: 01 Oct 2015 06:41
Export:

Optionen (nur für Redakteure)

View Item View Item