TU Darmstadt / ULB / TUbiblio

Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics

Hinterstein, Manuel ; Schmitt, Ljubomira A. ; Hoelzel, Markus ; Jo, Wook ; Rödel, Jürgen ; Kleebe, Hans-Joachim ; Hoffman, M. :
Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics.
[Online-Edition: http://dx.doi.org/10.1063/1.4922145]
In: Applied Physics Letters, 106 (22) 222904(1-5). ISSN 0003-6951
[Artikel], (2015)

Offizielle URL: http://dx.doi.org/10.1063/1.4922145

Kurzbeschreibung (Abstract)

In this study, the evolution of field induced mechanisms in lead-free piezoelectric ceramics (1−x)Bi1/2 Na 1/2TiO3-xBaTiO3 with x = 0.06 and 0.07 was investigated by transmission electron microscopy, neutron, and X-ray diffraction. Preliminary investigations revealed a strong degradation of macroscopic electromechanical properties within the first 100 bipolar electric cycles. Therefore, this structural investigation focuses on a comparative diffraction study of freshly prepared, poled, and fatigued specimens. Transmission electron microscopy and neutron diffraction of the initial specimens reveal the coexistence of a rhombohedral and a tetragonal phase with space group R3c and P4bm, respectively. In situ electric field X-ray diffraction reveals a pronounced field induced phase transition from a pseudocubic state to a phase composition of significantly distorted phases upon poling with an external electric field of 4 kV/mm. Although the structures of the two compositions are pseudocubic and almost indistinguishable in the unpoled virgin state, the electric field response shows significant differences depending on composition. For both compositions, the application of an electric field results in a field induced phase transition in the direction of the minority phase. Electric cycling has an opposite effect on the phase composition and results in a decreased phase fraction of the minority phase in the fatigued remanent state at 0 kV/mm.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Hinterstein, Manuel ; Schmitt, Ljubomira A. ; Hoelzel, Markus ; Jo, Wook ; Rödel, Jürgen ; Kleebe, Hans-Joachim ; Hoffman, M.
Titel: Cyclic electric field response of morphotropic Bi1/2Na1/2TiO3-BaTiO3 piezoceramics
Sprache: Englisch
Kurzbeschreibung (Abstract):

In this study, the evolution of field induced mechanisms in lead-free piezoelectric ceramics (1−x)Bi1/2 Na 1/2TiO3-xBaTiO3 with x = 0.06 and 0.07 was investigated by transmission electron microscopy, neutron, and X-ray diffraction. Preliminary investigations revealed a strong degradation of macroscopic electromechanical properties within the first 100 bipolar electric cycles. Therefore, this structural investigation focuses on a comparative diffraction study of freshly prepared, poled, and fatigued specimens. Transmission electron microscopy and neutron diffraction of the initial specimens reveal the coexistence of a rhombohedral and a tetragonal phase with space group R3c and P4bm, respectively. In situ electric field X-ray diffraction reveals a pronounced field induced phase transition from a pseudocubic state to a phase composition of significantly distorted phases upon poling with an external electric field of 4 kV/mm. Although the structures of the two compositions are pseudocubic and almost indistinguishable in the unpoled virgin state, the electric field response shows significant differences depending on composition. For both compositions, the application of an electric field results in a field induced phase transition in the direction of the minority phase. Electric cycling has an opposite effect on the phase composition and results in a decreased phase fraction of the minority phase in the fatigued remanent state at 0 kV/mm.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Physics Letters
Band: 106
(Heft-)Nummer: 22
Freie Schlagworte: Piezoelectric fields, Electric fields, X-ray diffraction, Phase transitions, Neutron diffraction
Fachbereich(e)/-gebiet(e): Fachbereich Material- und Geowissenschaften
Fachbereich Material- und Geowissenschaften > Geowissenschaften > Geomaterialwissenschaften
Fachbereich Material- und Geowissenschaften > Materialwissenschaften
Fachbereich Material- und Geowissenschaften > Materialwissenschaften > Nichtmetallisch-Anorganische Werkstoffe
Fachbereich Material- und Geowissenschaften > Materialwissenschaften > Strukturforschung
Zentrale Einrichtungen
Zentrale Einrichtungen > Sonderforschungsbereich 595
Zentrale Einrichtungen > Sonderforschungsbereich 595 > A - Synthese
Zentrale Einrichtungen > Sonderforschungsbereich 595 > A - Synthese > A1
Fachbereich Material- und Geowissenschaften > Geowissenschaften
Hinterlegungsdatum: 08 Jun 2015 12:38
Offizielle URL: http://dx.doi.org/10.1063/1.4922145
ID-Nummer: 10.1063/1.4922145
Sponsoren: The research leading to these results has received funding from the BMBF (Bundesministerium fuer Bildung und Forschung) (Grant No. 05K13VK1), the Sonderforschungsbereich 595 “Fatigue in Functional Materials”, and from the Feodor Lynen Research Fellowship Program of the Alexander von Humboldt Foundation.
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen