TU Darmstadt / ULB / TUbiblio

Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties

Kaspar, Jan ; Graczyk-Zajac, Magdalena ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Riedel, Ralf (2014)
Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties.
In: Journal of Power Sources, 269
doi: 10.1016/j.jpowsour.2014.06.089
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Silicon oxycarbide/nano-silicon composites (SiOC/nSi) are prepared by mixing of nano-sized silicon, either crystalline (nSi_c) or amorphous (nSi_a), with commercially available polyorganosiloxane RD-684a and subsequent pyrolysis. The influence of the type of nano-silicon, namely crystalline vs. amorphous, on the electrochemical properties and performance is analyzed and correlated with the corresponding composite microstructure. In the case of crystalline nano-silicon, a high reversible capacity of 905 mAh g−1 is registered, whereas that for amorphous nano-silicon embedment reaches 704 mAh g−1. However, regarding the cycling stability, SiOC/nSi_c shows a significant capacity fading upon continuous cycling, related to SiOC matrix failure. The host phase is not able to accommodate the arising mechanical stresses upon Si grain expansion and contraction when alloying/dealloying with Li. SiOC/nSi_a on the contrary, demonstrates a stable cycling performance for up to 100 cycles. This excellent performance is explained by the enhanced matrix integrity of the compound, rationalized by a smaller size of the embedded crystallized Si grains and an intrinsically enhanced electrical conductivity due to the formation of SiC.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Kaspar, Jan ; Graczyk-Zajac, Magdalena ; Lauterbach, Stefan ; Kleebe, Hans-Joachim ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties
Sprache: Englisch
Publikationsjahr: 10 Dezember 2014
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Power Sources
Jahrgang/Volume einer Zeitschrift: 269
DOI: 10.1016/j.jpowsour.2014.06.089
Kurzbeschreibung (Abstract):

Silicon oxycarbide/nano-silicon composites (SiOC/nSi) are prepared by mixing of nano-sized silicon, either crystalline (nSi_c) or amorphous (nSi_a), with commercially available polyorganosiloxane RD-684a and subsequent pyrolysis. The influence of the type of nano-silicon, namely crystalline vs. amorphous, on the electrochemical properties and performance is analyzed and correlated with the corresponding composite microstructure. In the case of crystalline nano-silicon, a high reversible capacity of 905 mAh g−1 is registered, whereas that for amorphous nano-silicon embedment reaches 704 mAh g−1. However, regarding the cycling stability, SiOC/nSi_c shows a significant capacity fading upon continuous cycling, related to SiOC matrix failure. The host phase is not able to accommodate the arising mechanical stresses upon Si grain expansion and contraction when alloying/dealloying with Li. SiOC/nSi_a on the contrary, demonstrates a stable cycling performance for up to 100 cycles. This excellent performance is explained by the enhanced matrix integrity of the compound, rationalized by a smaller size of the embedded crystallized Si grains and an intrinsically enhanced electrical conductivity due to the formation of SiC.

Freie Schlagworte: Li-ion battery, Anode, Silicon oxycarbide, SiOC, Nano-silicon, Polymer-derived ceramic
Zusätzliche Informationen:

SFB 595 Cooperation A4, B3

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > B - Charakterisierung > Teilprojekt B3: Strukturelle Untersuchungen zur Aufklärung der elektrischen Ermüdung in PZT
Hinterlegungsdatum: 18 Jul 2014 09:50
Letzte Änderung: 13 Aug 2021 11:28
PPN:
Sponsoren: This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany within the priority program SPP1473/JP8 and the collaborative research center SFB595.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen