TU Darmstadt / ULB / TUbiblio

Design and Implementation of Modern Controls for Drive and Suspension of a High Speed Double Conical Bearingless Motor on a Real-Time System

Mouratidis, Panagiotis :
Design and Implementation of Modern Controls for Drive and Suspension of a High Speed Double Conical Bearingless Motor on a Real-Time System.
[Online-Edition: http://tuprints.ulb.tu-darmstadt.de/4045]
TU Darmstadt
[Masterarbeit], (2014)

Offizielle URL: http://tuprints.ulb.tu-darmstadt.de/4045

Kurzbeschreibung (Abstract)

In this work, modern control approaches for drive and suspension of a high speed double conical bearingless motor are designed. Firstly, the air gap flux density and the forces acting on the rotor are analytically calculated. Subsequently, an elaborate model of the magnetically levitated rotor is developed, which considers the non-collocation of position sensors and levitation windings as well as the presence of angular motion. Three different control approaches are designed and simulated. The first approach comprises a state controller augmented with integral action, with which the closed loop dynamics are freely defined after pole placement. The other two approaches concern Linear Quadratic Gaussian and Model Predictive control. The pole placement control approach is tested successfully on the test bench with the real motor. Sinusoidal disturbance forces, with the rotational frequency, can cause large rotor orbits and may drive the inverters to their limits. For this reason, two synchronous filtering control strategies are developed. Using Imbalance Force Compensation, the rotor can be driven with low orbits at relatively low speed and using Imbalance Force Rejection, the rotor can be driven with low levitation currents at high speed. The control performance is evaluated by measurements and the measured frequency response of the closed loop system is presented.

Typ des Eintrags: Masterarbeit
Erschienen: 2014
Autor(en): Mouratidis, Panagiotis
Titel: Design and Implementation of Modern Controls for Drive and Suspension of a High Speed Double Conical Bearingless Motor on a Real-Time System
Sprache: Englisch
Kurzbeschreibung (Abstract):

In this work, modern control approaches for drive and suspension of a high speed double conical bearingless motor are designed. Firstly, the air gap flux density and the forces acting on the rotor are analytically calculated. Subsequently, an elaborate model of the magnetically levitated rotor is developed, which considers the non-collocation of position sensors and levitation windings as well as the presence of angular motion. Three different control approaches are designed and simulated. The first approach comprises a state controller augmented with integral action, with which the closed loop dynamics are freely defined after pole placement. The other two approaches concern Linear Quadratic Gaussian and Model Predictive control. The pole placement control approach is tested successfully on the test bench with the real motor. Sinusoidal disturbance forces, with the rotational frequency, can cause large rotor orbits and may drive the inverters to their limits. For this reason, two synchronous filtering control strategies are developed. Using Imbalance Force Compensation, the rotor can be driven with low orbits at relatively low speed and using Imbalance Force Rejection, the rotor can be driven with low levitation currents at high speed. The control performance is evaluated by measurements and the measured frequency response of the closed loop system is presented.

Freie Schlagworte: double conical motor, bearingless motor, high speed motor, motor control, magnetically levitated rotor, levitation windings, pole placement, sinusoidal disturbance forces, rotor orbits, Imbalance Force Compensation, Imbalance Force Rejection
Fachbereich(e)/-gebiet(e): Fachbereich Elektrotechnik und Informationstechnik > Elektrische Energiewandlung
Fachbereich Elektrotechnik und Informationstechnik
Hinterlegungsdatum: 13 Jul 2014 19:55
Offizielle URL: http://tuprints.ulb.tu-darmstadt.de/4045
URN: urn:nbn:de:tuda-tuprints-40450
Gutachter / Prüfer: Binder, Prof. Andreas ; Messager, M.Sc. Gael
Datum der Begutachtung bzw. der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 1 Juli 2014
Schlagworte in weiteren Sprachen:
Einzelne SchlagworteSprache
doppelkonischer Motor, lagerloser Motor, hochtouriger Motor, Antriebsregelung, magnetisch schwebender Läufer, Schwebewicklungen, Polvorgabe, sinusförmige Störkräfte Rotorumlaufbahnen, Unwuchtkraftkompensation, Unwuchtkraftunterdrückung Deutsch
Alternatives oder übersetztes Abstract:
AbstractSprache
In dieser Arbeit wird der Entwurf von modernen Regelungen für Antrieb und Lagerung von einem hochtourigen doppelkonischen lagerlosen Motor besprochen. Zunächst werden die Luftspaltflussdichte und die auf den Rotor wirkenden Kräfte analytisch berechnet und anschließend wird ein ausführliches Modell des magnetisch schwebenden Läufers entwickelt, das die Positionsunterschiede von Lagesensoren und Schwebewicklungen, sowie die Existenz von Winkelbewegungen enthält. Anhand dieses Modells werden drei unterschiedliche Regelungen ausgelegt und simuliert. Der erste Ansatz umfasst einen mit Integralanteil erweiterten Zustandsregler, mit dem die Dynamik des geschlossenen Regelkreises frei nach Polvorgabe bestimmt wird. Die anderen Ansätze sind lineare-quadratische Gaußsche und modellbasierte prädiktive Regelungen. Die Regelung durch Polvorgabe wird erfolgreich auf dem Prüfstand am echten Motor getestet. Sinusförmige Störkräfte mit der Drehfrequenz können große Rotorumlaufbahnen verursachen und die Wechselrichter an ihre Grenzen treiben. Aus diesem Grund werden zwei Regelstrategien mit synchroner Filterung entwickelt. Bei niedriger Geschwindigkeit wird der Rotor durch Unwuchtkraftkompensation mit kleinen Exzentrizitäten angetrieben, und bei hohen Drehzahlen wird er durch Unwuchtkraftunterdrückung mit niedrigen Schwebeströmen angetrieben. Die Leistungsfähigkeit des Reglers wird durch Messungen ausgewertet, und die gemessene Frequenzantwort des geschlossenen Regelkreises wird dargestellt.Deutsch
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen