TU Darmstadt / ULB / TUbiblio

Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion

Pouryazdan, M. ; Schwen, D. ; Wang, D. ; Scherer, T. ; Hahn, H. ; Averback, R. S. ; Bellon, P. (2012)
Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion.
In: Physical Review B, 86 (14)
doi: 10.1103/PhysRevB.86.144302
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Forced chemical mixing in nanostructured Ag60Cu40 eutectic alloys during severe plastic deformation by high-pressure torsion (HPT) was quantitatively studied using x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. Nearly complete chemical homogenization of the original lamellar structure with a wavelength of ≈ 165 nm was achieved after a shear strain of ≈ 350. The chemical mixing is accompanied by extensive grain refinement leading to nanocrystalline grains with average sizes of ≈ 42 nm. A Monte Carlo computer simulation model, which attributes mixing to dislocation glide, shows reasonable agreement with the experimental results. The model also shows that the characteristic strain for chemical homogenization scales linearly with the length scale of the system L, and not with the square of the length scale L2, as would be expected for Fickian diffusion.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Pouryazdan, M. ; Schwen, D. ; Wang, D. ; Scherer, T. ; Hahn, H. ; Averback, R. S. ; Bellon, P.
Art des Eintrags: Bibliographie
Titel: Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion
Sprache: Englisch
Publikationsjahr: 1 Oktober 2012
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review B
Jahrgang/Volume einer Zeitschrift: 86
(Heft-)Nummer: 14
DOI: 10.1103/PhysRevB.86.144302
Kurzbeschreibung (Abstract):

Forced chemical mixing in nanostructured Ag60Cu40 eutectic alloys during severe plastic deformation by high-pressure torsion (HPT) was quantitatively studied using x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. Nearly complete chemical homogenization of the original lamellar structure with a wavelength of ≈ 165 nm was achieved after a shear strain of ≈ 350. The chemical mixing is accompanied by extensive grain refinement leading to nanocrystalline grains with average sizes of ≈ 42 nm. A Monte Carlo computer simulation model, which attributes mixing to dislocation glide, shows reasonable agreement with the experimental results. The model also shows that the characteristic strain for chemical homogenization scales linearly with the length scale of the system L, and not with the square of the length scale L2, as would be expected for Fickian diffusion.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 17 Jun 2014 11:23
Letzte Änderung: 17 Jun 2014 11:23
PPN:
Sponsoren: The research at TUD and KIT was financially supported by Deutsche Forschungsgemeinschaft (DFG) under the Project HA1344/23-1. , The research at the University of Illinois by was financially supported by the US National Science Foundation under Grant DMR 10-05813 and the US Department of Energy, Basic Energy Sciences under Grant DOE LANL 76604-001-10 (EFRC-CMIME).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen