TU Darmstadt / ULB / TUbiblio

Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries

Wilamowska, Monika ; Pradeep, V. S. ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Sorarù, Gian Domenico (2014)
Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries.
In: Solid State Ionics, 260
doi: 10.1016/j.ssi.2014.03.021
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Polymer derived silicon oxycarbide (SiOC) ceramics are investigated as potential anodes for lithium ion batteries. Different SiOC ceramics are prepared by pyrolysis (1000 °C and 1400 °C under controlled argon atmosphere) of polysiloxanes ceramic precursors. Preceramic polymers are synthesized using the sol–gel method. Phenyltriethoxysilane (PhTES) and methyltriethoxysilane (MTES) have been used as starting precursors and mixed with different ratios in order to tailor the chemical composition and the structure of the final product. The obtained SiOC ceramics are amorphous with various content of free carbon phase (from approx. 25 to 40 wt.%). The presence of disordered carbons in the ceramic structure is confirmed by the appearance of a well pronounced D band at 1330 cm− 1 in the Raman spectra. Additionally, 29Si MAS-NMR spectra show the presence, in the structure of the materials pyrolysed at 1000 °C, of mixed bond tetrahedra such as: SiO3C, SiO2C2, SiOC3 and SiO4 units. Pyrolysis at an elevated temperature (1400 °C) promotes the phase separation into oxygen rich (SiO4) and carbon rich (SiC4) units with consumption of mixed bonds. Carbon rich SiOC samples exhibit significant reversible capacity and enhanced cycling stability (up to 600 mAh g− 1 measured at a slow current rate of C/20 after 140 cycles of continuous charging–discharging with increasing current density). However, the high irreversible capacity of the first few cycles remains an issue to be solved.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Wilamowska, Monika ; Pradeep, V. S. ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Sorarù, Gian Domenico
Art des Eintrags: Bibliographie
Titel: Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries
Sprache: Englisch
Publikationsjahr: 1 Juli 2014
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Solid State Ionics
Jahrgang/Volume einer Zeitschrift: 260
DOI: 10.1016/j.ssi.2014.03.021
Kurzbeschreibung (Abstract):

Polymer derived silicon oxycarbide (SiOC) ceramics are investigated as potential anodes for lithium ion batteries. Different SiOC ceramics are prepared by pyrolysis (1000 °C and 1400 °C under controlled argon atmosphere) of polysiloxanes ceramic precursors. Preceramic polymers are synthesized using the sol–gel method. Phenyltriethoxysilane (PhTES) and methyltriethoxysilane (MTES) have been used as starting precursors and mixed with different ratios in order to tailor the chemical composition and the structure of the final product. The obtained SiOC ceramics are amorphous with various content of free carbon phase (from approx. 25 to 40 wt.%). The presence of disordered carbons in the ceramic structure is confirmed by the appearance of a well pronounced D band at 1330 cm− 1 in the Raman spectra. Additionally, 29Si MAS-NMR spectra show the presence, in the structure of the materials pyrolysed at 1000 °C, of mixed bond tetrahedra such as: SiO3C, SiO2C2, SiOC3 and SiO4 units. Pyrolysis at an elevated temperature (1400 °C) promotes the phase separation into oxygen rich (SiO4) and carbon rich (SiC4) units with consumption of mixed bonds. Carbon rich SiOC samples exhibit significant reversible capacity and enhanced cycling stability (up to 600 mAh g− 1 measured at a slow current rate of C/20 after 140 cycles of continuous charging–discharging with increasing current density). However, the high irreversible capacity of the first few cycles remains an issue to be solved.

Freie Schlagworte: Silicon oxycarbide; Anode materials; Lithium ion batteries; Sol–gel synthesis
Zusätzliche Informationen:

SFB 595 A4

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 595: Elektrische Ermüdung > A - Synthese > Teilprojekt A4: Neue Funktionskeramiken durch Anionensubstitution in oxidischen Systemen
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Zentrale Einrichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 03 Jun 2014 10:45
Letzte Änderung: 07 Jul 2014 12:15
PPN:
Sponsoren: This work is supported by the Foundation for Polish Science under grant HOMING PLUS/2012-6/16. , MGZ, RR, and VSP acknowledge the support of the German Science Foundation (SFB 595). VSP and GDS acknowledge the financial contribution from the EU and MC-ITN FUNEA. , The authors also acknowledge C. Fasel (TGA) and J. Kaspar (elemental analysis) for their support throughout the individual measurements.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen