TU Darmstadt / ULB / TUbiblio

New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials

Pradeep, V. S. and Graczyk-Zajac, Magdalena and Riedel, Ralf and Sorarù, Gian Domenico (2014):
New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials.
In: Electrochimica Acta, Elsevier Science Publishing, pp. 78-85, 119, ISSN 00134686,
[Online-Edition: http://dx.doi.org/10.1016/j.electacta.2013.12.037],
[Article]

Abstract

Polymer derived silicon oxycarbide (SiOC) materials are prepared by the pyrolysis of preceramic polymers obtained from polyhydridomethylsiloxane using 1,3,5,7-tetramethyl1,3,5,7-tetravinyl cyclotetrasiloxane or divinyl benzene as a cross-linking agent. The pyrolysis is carried out in an inert atmosphere at 1000 and 1300 °C. The carbon content of SiOC is varied by changing the amount of starting precursors maintaining the same O/Si atomic ratio of about 1. Electrochemical measurements are performed in order to evaluate the materials in terms of their application as anodes in Li-ion batteries. Detailed structural characterization study is performed using complementary techniques with the aim of correlating the electrochemical behavior with the structure of the SiOC anodes. Results suggest that SiOC anodes behave as a composite material consisting of a disordered silicon oxycarbide phase having a very high first insertion capacity of ca 1300 mAh g−1 and a free C phase. However, the charge irreversible trapped into the amorphous silicon oxycarbide network is also high and therefore the maximum reversible lithium storage capacity of 650mAh g−1 is measured on high-C content SiOCs for which the balance between the two phases, namely the amorphous silicon oxycarbide and the free C phase, is optimal. The high carbon content SiOC show also an excellent cycling stability and performance at high charging/discharging rate: the reversible capacity at 2 C rate being around 200 mAh g−1. Increasing the pyrolysis temperature has an opposite effect on the low-C and high-C materials: for the latter one the reversible capacity decreases following a known trend while the former shows an increase of the reversible capacity which has never been observed before for similar materials.

Item Type: Article
Erschienen: 2014
Creators: Pradeep, V. S. and Graczyk-Zajac, Magdalena and Riedel, Ralf and Sorarù, Gian Domenico
Title: New Insights in to the Lithium Storage Mechanism in Polymer Derived SiOC Anode Materials
Language: English
Abstract:

Polymer derived silicon oxycarbide (SiOC) materials are prepared by the pyrolysis of preceramic polymers obtained from polyhydridomethylsiloxane using 1,3,5,7-tetramethyl1,3,5,7-tetravinyl cyclotetrasiloxane or divinyl benzene as a cross-linking agent. The pyrolysis is carried out in an inert atmosphere at 1000 and 1300 °C. The carbon content of SiOC is varied by changing the amount of starting precursors maintaining the same O/Si atomic ratio of about 1. Electrochemical measurements are performed in order to evaluate the materials in terms of their application as anodes in Li-ion batteries. Detailed structural characterization study is performed using complementary techniques with the aim of correlating the electrochemical behavior with the structure of the SiOC anodes. Results suggest that SiOC anodes behave as a composite material consisting of a disordered silicon oxycarbide phase having a very high first insertion capacity of ca 1300 mAh g−1 and a free C phase. However, the charge irreversible trapped into the amorphous silicon oxycarbide network is also high and therefore the maximum reversible lithium storage capacity of 650mAh g−1 is measured on high-C content SiOCs for which the balance between the two phases, namely the amorphous silicon oxycarbide and the free C phase, is optimal. The high carbon content SiOC show also an excellent cycling stability and performance at high charging/discharging rate: the reversible capacity at 2 C rate being around 200 mAh g−1. Increasing the pyrolysis temperature has an opposite effect on the low-C and high-C materials: for the latter one the reversible capacity decreases following a known trend while the former shows an increase of the reversible capacity which has never been observed before for similar materials.

Journal or Publication Title: Electrochimica Acta
Volume: 119
Publisher: Elsevier Science Publishing
Uncontrolled Keywords: SiOC, Li-ion batteries, Polymer derived ceramics, Anodes
Divisions: 11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis > Subproject A4: Novel functional ceramics using anionic substitution in oxidic systems
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences
Zentrale Einrichtungen
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
DFG-Collaborative Research Centres (incl. Transregio)
Date Deposited: 08 Jan 2014 09:54
Official URL: http://dx.doi.org/10.1016/j.electacta.2013.12.037
Additional Information:

SFB 595 A4

Identification Number: doi:10.1016/j.electacta.2013.12.037
Export:
Suche nach Titel in: TUfind oder in Google

Optionen (nur für Redakteure)

View Item View Item