Körber, C. ; Krishnakumar, V. ; Klein, Andreas ; Panaccione, G. ; Torelli, P. ; Walsh, A. ; Lopes Ferreira da Silva, J. ; Wei, S.-H. ; Egdell, R. G. ; Payne, D. J. (2010):
Electronic structure of In2O3 and Sn-doped In2O3 by hard x-ray photoemission spectroscopy.
In: Physical Review B, 81 (16), p. 165207. ISSN 1098-0121,
[Article]
Abstract
The valence and core levels of In(2)O(3) and Sn-doped In(2)O(3) have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In(2)O(3) display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In(2)O(3). This conclusion is in accord with the fact that a conduction band feature observed for undoped In(2)O(3) in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission.
Item Type: | Article | ||||
---|---|---|---|---|---|
Erschienen: | 2010 | ||||
Creators: | Körber, C. ; Krishnakumar, V. ; Klein, Andreas ; Panaccione, G. ; Torelli, P. ; Walsh, A. ; Lopes Ferreira da Silva, J. ; Wei, S.-H. ; Egdell, R. G. ; Payne, D. J. | ||||
Title: | Electronic structure of In2O3 and Sn-doped In2O3 by hard x-ray photoemission spectroscopy | ||||
Language: | English | ||||
Abstract: | The valence and core levels of In(2)O(3) and Sn-doped In(2)O(3) have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In(2)O(3) display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In(2)O(3). This conclusion is in accord with the fact that a conduction band feature observed for undoped In(2)O(3) in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission. |
||||
Journal or Publication Title: | Physical Review B | ||||
Journal volume: | 81 | ||||
Number: | 16 | ||||
Uncontrolled Keywords: | ITO In2O3 photoemission XPS | ||||
Divisions: | 11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Surface Science DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres Zentrale Einrichtungen DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties > Subproject D3: Function and fatigue of oxide electrodes in organic light emitting diodes |
||||
Date Deposited: | 29 Oct 2011 08:08 | ||||
Official URL: | http://dx.doi.org/10.1103/PhysRevB.81.165207 | ||||
Additional Information: | SFB 595 D3 |
||||
Identification Number: | doi:10.1103/PhysRevB.81.165207 | ||||
Alternative keywords: |
|
||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |