TU Darmstadt / ULB / TUbiblio

Microscopic elements of electrical excitation in Chara: transient activity of Cl- channels in the plasma membrane.

Thiel, Gerhard ; Homann, Ulrike ; Gradmann, D. (1993)
Microscopic elements of electrical excitation in Chara: transient activity of Cl- channels in the plasma membrane.
In: The Journal of membrane biology, 134 (1)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The plasma membrane of Chara corallina was made accessible for patch pipettes by cutting a small window through the cell wall of plasmolyzed internodal cells. With pipettes containing Cl- as Ca2+ or Ba2+ (50 or 100 mM), but not as Mg2+ or K+ salt, it was possible to record in the cell-attached mode for long periods with little channel activity, randomly interspersed with intervals of transient activation of two Cl- channel types (cord conductance at +50 mV: 52 and 16 pS, respectively). During these periods of transient channel activity, variable numbers (up to some 10) of the two Cl- channel types activated and again inactivated over several 100 msec in a coordinated fashion. Transient Cl- channel activity was favored by voltages positive of the free running membrane voltage (> -45 mV); but positive voltage alone was neither a sufficient nor a necessary condition for activation of these channels. Neither type of Cl- channel was markedly voltage dependent. A third, nonselective 4 pS channel is a candidate for Ca2+ translocation. The activity of this channel does not correlate in time with the transient activity of the Cl- channels. The entire set of results is consistent with the following microscopic mechanism of action potentials in Chara, concerning the role of Ca2+ and Cl- for triggering and time course: Ca2+ uptake does not activate Cl- channels directly but first supplies a membrane-associated population of Ca2+ storage sites. Depolarization enhances discharge of Ca2+ from these elements (none or few under the patch pipette) resulting in a local and transient increase of free Ca2+ concentration ([Ca2+]cyt) at the inner side of the membrane before being scavenged by the cytoplasmic Ca2+ buffer system. In turn, the transient rise in [Ca2+]cyt causes the transient activity of those Cl- channels, which are more likely to open at an elevated Ca2+ concentration.

Typ des Eintrags: Artikel
Erschienen: 1993
Autor(en): Thiel, Gerhard ; Homann, Ulrike ; Gradmann, D.
Art des Eintrags: Bibliographie
Titel: Microscopic elements of electrical excitation in Chara: transient activity of Cl- channels in the plasma membrane.
Sprache: Englisch
Publikationsjahr: 1993
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of membrane biology
Jahrgang/Volume einer Zeitschrift: 134
(Heft-)Nummer: 1
Kurzbeschreibung (Abstract):

The plasma membrane of Chara corallina was made accessible for patch pipettes by cutting a small window through the cell wall of plasmolyzed internodal cells. With pipettes containing Cl- as Ca2+ or Ba2+ (50 or 100 mM), but not as Mg2+ or K+ salt, it was possible to record in the cell-attached mode for long periods with little channel activity, randomly interspersed with intervals of transient activation of two Cl- channel types (cord conductance at +50 mV: 52 and 16 pS, respectively). During these periods of transient channel activity, variable numbers (up to some 10) of the two Cl- channel types activated and again inactivated over several 100 msec in a coordinated fashion. Transient Cl- channel activity was favored by voltages positive of the free running membrane voltage (> -45 mV); but positive voltage alone was neither a sufficient nor a necessary condition for activation of these channels. Neither type of Cl- channel was markedly voltage dependent. A third, nonselective 4 pS channel is a candidate for Ca2+ translocation. The activity of this channel does not correlate in time with the transient activity of the Cl- channels. The entire set of results is consistent with the following microscopic mechanism of action potentials in Chara, concerning the role of Ca2+ and Cl- for triggering and time course: Ca2+ uptake does not activate Cl- channels directly but first supplies a membrane-associated population of Ca2+ storage sites. Depolarization enhances discharge of Ca2+ from these elements (none or few under the patch pipette) resulting in a local and transient increase of free Ca2+ concentration ([Ca2+]cyt) at the inner side of the membrane before being scavenged by the cytoplasmic Ca2+ buffer system. In turn, the transient rise in [Ca2+]cyt causes the transient activity of those Cl- channels, which are more likely to open at an elevated Ca2+ concentration.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
?? fb10_botanik ??
10 Fachbereich Biologie > Plant Membrane Biophyscis (am 20.12.23 umbenannt in Biologie der Algen und Protozoen)
10 Fachbereich Biologie > Pflanzliche Zellbiologie
Hinterlegungsdatum: 22 Jun 2011 11:53
Letzte Änderung: 05 Mär 2013 09:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen