Glaum, Julia and Granzow, Torsten and Rödel, Jürgen (2010):
Evaluation of domain wall motion in bipolar fatigued lead-zirconate-titanate: A study on reversible and irreversible contributions.
107, In: Journal of Applied Physics, (10), pp. 104119-1-104119-6, ISSN 00218979, [Online-Edition: http://dx.doi.org/10.1063/1.3386461],
[Article]
Abstract
Mobility of ferroelectric domain walls is a critical factor in the fatigue of piezoelectric ceramics. Here, reversible and irreversible domain wall motion is evaluated for lead-zirconate-titanate both before and after fatigue cycling. To this end, the small-signal permittivity at different levels of bias field is compared to the large-signal permittivity, i.e., the first derivative of the polarization hysteresis loop. While the small-signal permittivity is just determined by the reversible processes due to the small electric excitation field, the large-signal permittivity reflects both reversible and irreversible contributions. The ratio of large- and small-signal permittivity is suggested as measure for the reversible contribution to the overall polarization change. Fatigue leads to a decrease in the small-signal permittivity and hence a general suppression of the reversible processes. Furthermore it causes a shift in the irreversible contributions to higher electric fields and a retarded backswitching when the external electric field is reduced after the maximum field value was reached. This reinforces the notion of bipolar electric fatigue caused by pinned domain walls due to agglomeration of charged defects in the sample bulk.
Item Type: | Article |
---|---|
Erschienen: | 2010 |
Creators: | Glaum, Julia and Granzow, Torsten and Rödel, Jürgen |
Title: | Evaluation of domain wall motion in bipolar fatigued lead-zirconate-titanate: A study on reversible and irreversible contributions |
Language: | English |
Abstract: | Mobility of ferroelectric domain walls is a critical factor in the fatigue of piezoelectric ceramics. Here, reversible and irreversible domain wall motion is evaluated for lead-zirconate-titanate both before and after fatigue cycling. To this end, the small-signal permittivity at different levels of bias field is compared to the large-signal permittivity, i.e., the first derivative of the polarization hysteresis loop. While the small-signal permittivity is just determined by the reversible processes due to the small electric excitation field, the large-signal permittivity reflects both reversible and irreversible contributions. The ratio of large- and small-signal permittivity is suggested as measure for the reversible contribution to the overall polarization change. Fatigue leads to a decrease in the small-signal permittivity and hence a general suppression of the reversible processes. Furthermore it causes a shift in the irreversible contributions to higher electric fields and a retarded backswitching when the external electric field is reduced after the maximum field value was reached. This reinforces the notion of bipolar electric fatigue caused by pinned domain walls due to agglomeration of charged defects in the sample bulk. |
Journal or Publication Title: | Journal of Applied Physics |
Volume: | 107 |
Number: | 10 |
Divisions: | 11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties > Subproject D1: Mesoscopic and macroscopic fatigue in doped ferroelectric ceramics DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue Zentrale Einrichtungen DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) |
Date Deposited: | 20 Jun 2011 08:54 |
Official URL: | http://dx.doi.org/10.1063/1.3386461 |
Additional Information: | SFB 595 D1 |
Identification Number: | doi:10.1063/1.3386461 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
View Item |